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Summary 

Multiple antennas at both the transmitter and receiver is known as multiple-input multiple- 
output (MIMO) system. This has emerged as the most promising technique for improving 
the performance of wireless digital transmission systems as well as allowing higher data rates 
to be obtained for a given bandwidth. A consequence of the MIMO wireless communications 
revolution is that multipath scattering of the transmitted signal has moved from being a problem 
to being a valuable resource. This has happened to such extent that MIMO systems have come 
to rely on this resource. However, away from dense urban and indoor environments such as 
Australian rural and remote areas with wide open spaces and flat or smooth undulating terrain 
such rich scattering can be hard to find. 

This research seeks to develop MIMO schemes which will give robust and reliable perfor- 
mance in environments that can change rapidly from rich scattering environment to clear line 
of sight between transmitter and receiver. Wireless communications system which are robust to 
changing environment conditions are a particular important factor in military communication 
systems as well as for civilian emergency services. In this work, polarization is proposed as 
a source of diversity in wireless communications. Polarization diversity is particularly suited 
to the Australian rural and remote environment where wide open spaces and flat or smooth 
undulating terrain give rise to line of sight conditions between the transmitter and the receiver. 
The polarization diversity of transmitted signals is mostly preserved by the line-of-sight envi- 
ronment, presenting an opportunity for transmitter and receiver diversity techniques. 

Another aspect of the research presented here is the development of fast, fixed complexity, 
decoding algorithms for space-time codes that are robust to the changing transmission condi- 
tions. Reliable high rate transmission over the MIMO system can only be achieved through 
"space-time coding". The major drawback of a number of potentially useful space-time codes 
is the high computational complexity of the known decoding algorithms. This is particular true 
for a number of codes which are best suited to the exploitation of polarization diversity. The ex- 
isting "fast" decoding algorithm for this decoding problem, the so-called sphere decoder, has 
performance which depends crucially on the channel conditions. When the channel is close 
to singular, that is, when the channel between the base station and terminal is close to pure 
line-of-sight, the sphere decoder defaults to an exhaustive search. If such conditions persist 
the communication system could be in outage purely due to computational overload. In this 
project we develop fast decoding algorithms which have fixed complexity across all channel 
conditions. In particular, we present the fastest known fixed complexity decoding algorithm 
for the Golden code, an important code used in the WiMax standard for fully mobile internet 
access. 
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Preface 

The primary characteristic of wireless communications is variability. Any change in the posi- 
tion of the transmitter or receiver, or in fact, of any object in the vicinity of the wireless system 
can cause the quality of the transmission to change. This effect is referred to as fading. Fad- 
ing is caused by the transmitted signal making its way to the receiver via multiple paths, and 
these multipath components can then destructively interfere to significantly reduce the received 
power. Another important characteristic of wireless communications is that users must share a 
common resource, bandwidth. 

Consideration of these problems and limitations led to the development of multiple-input 
multiple-output (MIMO) wireless communication systems in the mid 1990s and this technique 
has emerged as the most promising technique for improving the performance of wireless dig- 
ital transmission systems [1,2]. This improvement is two-fold. First, the limited resources of 
a wireless communication system, such as spectrum and power, can be efficiently used with 
multiple antennas to provide good quality and large capacity to a wide range of applications 
requiring high data rates. In short, MIMO techniques allow higher data rates to be obtained 
for a given bandwidth. The second advantage obtained through the use of MIMO systems is 
robustness to fading caused by multipath propagation of the radio transmissions. As a conse- 
quence of these benefits, MIMO has gone through the adoption curve for commercial wireless 
systems to the point that today (2009), all high throughput commercial standards (i.e. WiMax, 
Wi-Fi etc.) have adopted MIMO as part of the optional, if not mandatory, portions of their 
standards [3], 

A consequence of the MIMO wireless communications revolution is that multipath scatter- 
ing of the transmitted signal has moved from being a problem to being a valuable resource. 
This has happened to such an extent that MIMO systems have come to rely on this resource. 
However, away from dense urban and indoor environments, for example, in Australian rural 
and remote areas with wide open spaces and fiat or smooth undulating terrain such rich scat- 
tering can be hard to find. 

The research reported in this work seeks to develop MIMO schemes which will give robust 
and reliable performance in environments that can change rapidly from a rich scattering en- 
vironment to clear line of sight between transmitter and receiver. Wireless communications 
systems which are robust to changing environmental conditions are a particularly important 
factor in military communication systems as well as for civilian emergency services. 

Central to this research program is the introduction of a new degree of freedom at the phys- 
ical layer of the wireless network, called polarization. The polarization of the electromagnetic 
wave carrying the information from the transmitter to the receiver is defined by the orientation 
of the electric field vector in the plane perpendicular to the direction of propagation. Tradition- 
ally, wireless communication systems have used a single transmit antenna and a single receive 
antenna with linear vertical polarization. Linear horizontal and circular polarization are also 
possible and have found application in wireless point-to-point (e.g. IEEE 802.11 WiFi) and 
satellite communication systems respectively. By introducing either dual-polarized antennas 
and/or multiple antennas with different polarization, the dimension of polarization is added to 
those of time, frequency and space for wireless transmission at the physical layer (4). 

Some existing wireless systems (e.g. many WiFi access points) exploit polarization in an 
implicit way. These implicit techniques are analogous to traditional selection diversity [4], 
The signal is launched with a single polarization, the propagation medium then couples some 



energy into ihe cross-polarization plane, and ihe signal is received wilh a cross-polarized an- 
tenna [5]. Exploitation of implicit polarization diversity is suited to rich scattering (e.g. dense 
urban and indoor) environments |6). In this work, polarization is proposed as a source of ex- 
plicit diversity in wireless communications. Explicit polarization diversity is particularly suited 
to the Australian rural and remote environment where wide open spaces and flat or smooth un- 
dulating terrain give rise to line of sight (LOS) conditions between the transmitter and the 
receiver. The polarization diversities of transmitted signals are mostly preserved by the LOS 
environment, presenting an opportunity for transmitter diversity as well as receiver diversity 
techniques. 

Another aspect of the research reported here is to develop fast, fixed complexity, decod- 
ing algorithms for space-time codes that are robust to the changing environment. The major 
drawback of space-time codes is the high complexity of their decoding algorithms. This is 
particularly true for a number of codes which are best suited to the exploitation of polarization 
diversity. The existing "fast" decoding algorithm for this problem, the so-called sphere de- 
coder, has performance which depends crucially on the channel conditions. When the channel 
is close to singular, that is, when the channel between the base station and terminal is close to 
pure line of sight, the sphere decoder defaults to an exhaustive search. If such conditions per- 
sist the communication system could be in outage purely due to computational overload. The 
fast decoding algorithms developed here have fixed complexity across all channel conditions. 

The report is essentially divided into three parts. The first part, Chapters 1 and 2, give the 
necessary background on MIMO communications and space-time block codes and goes on to 
develop some new techniques which we later use to analyse polarimeiric MIMO schemes. 

The second part consists of Chapters 3 and 4. It reports on our development of fast de- 
coding algorithms for space-time codes. We develop fast decoding algorithms for a number 
of important space-time codes, that have fixed complexity across channel conditions. Our 
fast decoding algorithms are based on a technique called conditional optimization, which is 
widely used in statistical estimation and signal processing to reduce the search space of an 
optimization problem by taking advantage of the possibility of analytically optimizing over 
some subset of the parameters, conditioned on the remaining parameters. This technique has 
hardly been exploited in discrete optimization problems associated with decoding in wireless 
communications. We show how to apply this method to a large class of full-rate, full-diversity 
space-time block codes, which includes multiplexed orthogonal designs, to give fast maximum 
likelihood (ML) detection with low computational complexity. The technique is also applied to 
the Golden Code and perfect space-time block codes, in an approximate form, to obtain essen- 
tially maximum likelihood performance with greatly reduced complexity. Chapter 4 analyses, 
in a general way, the structure of space-time codes that allow fast maximum likelihood decod- 
ing. We show that the perfect space-time codes of Oggier et al. [7] are in fact, multiplexed 
quasi-orthogonal designs and so have fast, tixed complexity, exact ML decoding algorithms. 

The third part of this report explores the benefit of polarization diversity for MIMO sys- 
tems. In Chapter 2 we analyse interference cancellation for multiple Alamouti schemes using 
a Bayesian approach which provides a unified framework with which to understand the rela- 
tionship between various signal detection techniques. The approach leads to a new parameter 
which can be used to predict the performance of systems based on Alamouti coding, with- 
out needing to resort to simulations. This parameter is used to analyse various transmission 
schemes involving polarization diversity in Chapter 5. We show that a certain scheme which 
multiplexes space-time codes across polarization gives significant benefits in stability of per- 



formancc for the MIMO system in the presence of even a small LOS component. In particular, 
this scheme is shown to give inherent stability with respect to the relative orientation of a pair 
of spatially separated dual polarized transmit antenna. This provides an important indication 
of how polarization can be used to develop more robust and reliable wireless communication 
systems. We go on to investigate systems using dual polarized transmit and dual polarized 
receive antenna in various conditions from pure LOS, Ricean and pure scattering. It is shown 
that the performance of the Golden Code can be made stable across propagation conditions by 
the use of dual polarized transmit and dual polarized receive antennas. However, this is true 
only if the transmitter and/or receiver are fixed in position or are allowed to rotate in a plane of 
alignment. 

In mobile communications, the transmitter and/or receiver rotate with respect to each other, 
throwing the dual polarimetric antennas out of alignment and degrading the performance sig- 
nificantly. To improve the stability in transmission and/or reception under the rotation of the 
transmitter and/or receiver, we investigate the use of a triad antenna at the transmitter and the 
receiver in Chapter 6. We analytically show that the capacity of a system using triad antennas 
is preserved under the relative rotation of the transmitter and receiver. This is not the case for 
the dual polarized system. We introduce a 3 x 3 space-time code suitable for the triad system 
which gives full rate, through which the gains achievable with triad antennas are demonstrated. 
This code also has the advantage of being fast to decode due to our fast decoding algorithm. 
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I„ n x n Identity matrix 
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Chapter 1: MIMO Communications 

1.1 Introduction 

Recent advances in wireless communication systems have provided high speed, high through- 
put over wireless channels, providing high quality information exchange between portable de- 
vices located anywhere in the world. Wired communication has more stability, better perfor- 
mance and higher reliability, but it greatly constrains the environments or locations in which 
the system can be used. Wireless communication provides the benefits of portability, mobility 
and accessibility. However, this represents both freedom to the end user and also a number of 
challenges for the system designer [8]. 

Wireless communication is the transfer of information over a distance without the use of 
electrical conductors or wires. Instead, the information rides on electromagnetic waves, with 
the consequence that the information undergoes attenuation (fading) due to the interaction of 
the electromagnetic waves with the physical environment. The signal attenuation by wireless 
propagation may be due to the distance between communicating nodes, referred to as path loss. 
or due to shadowing from obstacles such as buildings, or due to constructive and destructive 
interference of multiple reflections of the electromagnetic wave, referred to as multipaih prop- 
agation. Figure l.l illustrates a typical outdoor wireless propagation environment where the 
mobile node is communicating with a wireless access point (base station). The signal trans- 
mitted from the mobile may reach the base station directly (line of sight) or through multiple 
reflections on local scatterers such as buildings, trees, hills etc. The received signal is a combi- 
nation of multiple delayed copies of the transmitted signal. This multipath propagation makes 
wireless a challenging communication environment. 

Scattering 

TJ 

Figure l.l: Radio propagation environment 



Fortunately, this challenge can be turned into an opportunity through the use of multiple 
antennas. The multiple antennas may be in spatially separate locations and/or have different 
polarizations (polarization diversity). Due to different local scattering environments, suffi- 
ciently separated antenna elements provide almost independent fading channels. How much 
separation is appropriate depends on the environment. In rural macro cells, many wavelengths 
of separation may be required to de-correlate antennas, whereas in indoor environments a half 
wavelength separation may be sufficient [9]. With sufficient spacing, multiple antennas at 
both ends of a wireless link can be used to exploit the statistical independence of the multi- 
ple channels connecting transmitter to receiver to increase spectral efficiency thought the uses 
of spatial multiplexing. The existence of multiple independent channels can also be used to 
improve link reliability through the use of transmit diversity techniques. A transmit diversity 
technique which spreads the transmitted information across the multiple independent paths, 
and which is particularly attractive because it does not require channel state information (CSI) 
at the transmitter, is space-time coding [10]. 

1.2 Spatial Multiplexing 

Spatial multiplexing (SM) is a technique which uses multiple antennas at both the transmitter 
and receiver to increase the transmission rate by exploiting multipath. That is, it uses the 
scattering characteristics of the propagation environment to enhance the transmission rate by 
treating the multiplicity of scattering paths as separate parallel sub-channels. Bell Labs was 
the first to demonstrate a laboratory prototype in 1998, known as BLAST (Bell Labs Layered 
Space-Time Architecture, see Figure 1.2), where SM is the principal technique used to improve 
the performance of a wireless communication system. Bell Labs accomplished this by splitting 
a single user's data stream into multiple sub-streams and using an array of transmitter antennas 
to simultaneously launch the parallel sub-streams. All the sub-streams are transmitted in the 
same frequency band, so spectrum is used very efficiently. Since the user's data is being sent in 
parallel over multiple antennas, the effective transmission rate increases roughly linearly with 
the number of antennas. 

1 nmsmil Antennas Kcccivc Anlennas 

Multipalh 

Channel 

Figure 1.2: MIMO system 



At (he receiver, if the multipath scattering is sufficient, i.e. the channel matrix has full rank, 
then the received signal at each receive antenna is a non-zero linear combination of indepen- 
dent transmitted sub-streams. Using sophisticated signal processing, these slight differences in 
scattering allow the sub-streams to be separated and recovered. In its most basic form known 
as vertical (V)-BLAST, the detection process uses a combination of nulling and symbol can- 
cellation to successively compute the decision statistics which are then used to form estimates 
of the underlying data symbols. 

Spatial multiplexing relies on the scattering richness in the propagation environment. The 
lack of such conditions reduces the achievable rates of spatial multiplexing techniques from 
their theoretical projections under ideal assumptions [11, 12]. 

1.3 Space-Time Block Codes 

Space-time block codes (STBC) introduced by Tarokh el al. [10], improve the reliability of 
communication over fading channels by correlating signals across different transmit antennas. 
The transmitted data stream is encoded in blocks which are distributed across space and time. 

Consider a communication system with nt transmit and nr receive antennas. Assume that 
the transmitted symbols from the nt transmit antennas at time slot t is 

Xi (x\,Xt,...,Xtl),     1 < t <T (1.1 

where x) is the transmitted symbol from antenna i at time slot t, and all transmitted symbols 
have the same duration. A nt x T space-time codeword matrix can be defined as 

X = (Xl, X2, . . . , XT) 

Ix\     x\    ...   XT\ 
2 2 2 x\    x2   • •.  xT 

*1    x2'   ...  xT'/ 

(1.2) 

The i    row x'  = (x\,x2,... ,x'T) is the data sequence transmitted from the i"' transmit 
antenna and the j'h column Xj = (xj,x|, x"') is the space-time symbol transmitted at 
time j, 1 < j < T.  In a general form, an STBC can be seen as a mapping of T complex 
symbols (xi,x2, • • • ,XT) onto a matrix X of dimension nt x T: 

(xi,x2, xT) -» X (1.3) 

1.3.1 Diversity 

Error probability on an additive white Gaussian noise (AWGN) channel decays exponentially 
with SNR, and the challenge of communication over Rayleigh fading channels is that error 
probability decays only inversely with SNR. The received symbols y are given by 

y = hX + n (1.4) 

where X is the transmitted codeword, h is the vector of fading (or channel) coefficients, and w 
is Gaussian noise. We assume a quasi-static model where the fading coefficients are constant 
over a frame and change independently from one frame to the next. If we normalize X so that 



the average energy per complex symbol is I (SNR = 1/,/Vo), then the probability of error given 
perfect channel state information is 

Pr(X,-^X,|h) = gfl|fc^/Z^)l1) (1.5) 

and averaging over the channel statistics gives 

f     ( JstiRh(Xi - Xj)(X2 - Xj)t/i*\ ) 

where 

<M') = ^?r,",,(zr)*- (,'7) 

The matrix (X, - X7)(X, - Xj)f is Hermitian, so there is a unitary matrix U for which 

U(Xt - XJKX, - Xrftf =diag(A?,--- ,A£t) (1.8) 

where the entries A, are the singular values of X, - Xj. The change of basis h —» Uh 
preserves the Rayleigh distribution of h and if Ai, • • • . An, arc nonzero, then 

and the matrix X, - Xj is nonsingular and maximal diversity is achieved. We can associate 
the following quantities with a space-time code: 

• The diversity gain is the minimum of the rank of X, - Xj over all codewords in the 
code. 

• The coding gain is the minimum value of the product of the non-zero singular values of 
Xj - Xj over all codewords. 

There is a fundamental trade-off between using the multipath to improve throughput by mul- 
tiplexing and improving reliability through using a space-time code. This can be quantified 
using the following definitions of diversity order and multiplexing rate. 

A scheme which has an average error probability Pr(SN R) as a function of SNR that 
satisfies 

SNK—OO    
b  log SNR 

is said to have a diversity order of d. In other words, a scheme with diversity order d has an 
error probability at high SNR that behaves as Pe(SNR) ~ SNR"d. 

A scheme which has a transmission rate of ft(SNR) as a function of SNR is said to have a 
multiplexing rate r if 

log fl(SNR) 
lim        f    ;MD ' = r. (1.11) 

SNR — oo      log SNR 

In other words, the system has a rate of r log SNR at high SNR. There is a trade-off between 
achievable diversity and multiplexing rate which is expressed in terms of the supremum d"p{(r) 
of the diversity gain achievable by any scheme with multiplexing rate r. The following theorem 
is due to Zheng and Tse [13]. 



Theorem 1 Let K = min(nt, n,•) where ni and n, are the number of transmit and receive 
antennas and suppose that the code block length N > n, + nr - 1. Then the optimal trade- 
off curve d"'"(r) is given by the piecewise linear function connecting points in (k,d"'"(k)), 
k = 0, • • • . K where 

(f""(k) = (n, -k){nr - k). (1.12) 

II implies that high multiplexing rate comes at the price of decreased diversity gain and high 
diversity gain comes at the price of low multiplexing rate. 

We now give a description of some of the most important space-time codes. 

1.3.2 Alamouti Code 

The most famous space-time block code was discovered by Alamouti [14], and is described 
by a 2 x 2 matrix where the columns represent different time slots, the rows represent dif- 
ferent antennas, and the entries are the symbols to be transmitted. The Alamouti codeword is 
represented as 

-S; 
3) 

The two rows (or columns) of X are orthogonal to each other. 

XX' =(|*i|2 + |x2|
2)I2. (1.14) 

Thus, given two codewords X and Y we see that 

det(X - Y)(X - Y)f = (|n - y,|2 + |i2 - y2|
2)2. (1.15) 

This means that a subcode of the Alamouti code corresponding to symbol pairs x} = (T,J ,, x>2) e 
C2,j = 1,- •• ,N,im 

Diversity gain:     2 
Coding gain:        min,,/t6{i,... ,N) \\Xj - xk\\2 

At the receiver, the signals n, r2 received over two consecutive time slots are given by 

(-3) - (-';«) («)+(K) 
where fei,/ij are the path gains from the two transmit antennas to the receiver, and the noise 
samples ni,na are independent samples of a zero-mean complex Gaussian random variable 
with variance 2a2 per complex dimension. Equation (1.16) can be represented as 

r = Tix + n (1.17) 

where the equivalent matrix channel (induced channel) "H is orthogonal i.e. H.^'H = I2. 
Throughout this work we consider the case of coherent detection i.e. the receiver is assumed 
to have perfect knowledge of the Channel State Information (CSI). In practice CSI can be 
obtained by introducing some pilot transmissions that enable accurate channel estimation. With 
H known, the following processing can be done at the receiver 

Hir = (\hi\2 + \h2\2)x+n'. (1.18) 



The new noise lerm n is still while, so the ML detection of xi, X2 is decoupled. 
The Alamouti code provides Cull diversity at full transmission rate for any real or complex 

signal constellation, it does not require CSI at the transmitter, and the ML decoding requires 
only linear complexity processing. For these reasons, the Alamouti code has been adopted 
in several wireless standards such as WCDMA [15] and CDMA2000 [16]. The Alamouti 
code also facilitates higher data rates through multiplexing of parallel data streams and the 
addition of a second antenna at the receiver that performs interference cancellation. Data rates 
of 4 bits/s/Hz have been demonstrated for several wireless channels including UTMS, GSM, 
EDGE, IEEE 802.1 In and IEEE 802.16 [17]. This scheme is investigated in the next chapter 
with a view to extending its use to a polarization diverse MIMO systems. 

1.3.3 Orthogonal Space-Time Block Codes 

The Alamouti code is an example of an Orthogonal Space-Time Block Code (OSTBC) for 
two transmit antennas and its success provided an impetus for investigating the existence of 
OSTBCs for more than two transmit antennas.  OSTBCs are also referred to as orthogonal 
designs (OD) and have the property that ML decoding is linear. At the same time these codes 
achieve full diversity.   In order to describe OSTBCs, first consider an STBC. written in the 
form of a linear dispersion code (LDC)[I8] (note that LDC are discussed in some detail in 
Section 4.1) 

IT 

X = ^i,/1, (1.19) 
i   i 

where Ax isan« x 7'complex matrix and {xi}?Ji is a set of real scalar symbols. 

Definition 1 A STBC (1.19) is an OSTBC if it satisfies the following 

IT 

XXf = ]^x<Di, (1.20) 
i  i 

where each V, is a diagonal matrix. It follows that 

AXA\ =Vt,i= L....27' 
(1.21) 

AlA] + AjA\ = 2&ijVi, \<i<j< 27'. 

Tarokh et al. [19] showed that, in general, full-rate or orthogonal designs exist for all real 
constellations but only for two, four, or eight transmit antennas, while they exist for all complex 
constellations only for two transmit antennas (the Alamouti scheme). However, for particular 
constellations, it might be possible to construct orthogonal designs for other cases. Moreover, 
if a rate loss is acceptable, orthogonal designs exist for an arbitrary number of transmit an- 
tennas [19]. It is also shown by Wang and Xia [20] that the rate of a generalized complex 
orthogonal design cannot exceed 3/4 for more than two antennas. An example of the R = 3/4 
rate code for four transmit antennas is the following: 

(1.22) 

X], X2 xz o\ 
X*2 x\ 0 X3 

*3 0 x\ -3-2 

0 -xl X*2 xj 



Xl X2 X3 •I'l 

-x\ x\  X^ *3 

~x\ ~ X^ x\ x'i 
X4 -x3 -X2 X] 

1.3.4 Quasi-Orthogonal Space-Time Block Codes 

As mentioned above, Tarokh el al. [ 19] showed that lull-rate orthogonal designs with complex 
elements in its transmission matrix are impossible for more than two transmit antennas. This 
has motivated Jafarkhani (21] to develop a full-rate complex design for four transmit antennas 
for which pairs of symbols could be decoded independently. This is only possible if one accepts 
a loss of diversity compared to a true orthogonal design. Jafarkhani called this class of codes 
quasi-orthogonal space-time block codes (QOSTBC) and introduced the 4 x 4 code 

(1.23) 

where the structure of the 2 x 2 blocks mirrors that of the Alamouti code. The columns 
Xi,i = 1.2,3.4 of the matrix X divide into two groups {X1.X4} and {X-2,X:1} with 
the columns from different groups being orthogonal. Jafarkhani showed that the maximum 
likelihood decision metric is a sum /(xi,Xi) + #(£2, £3) where / is independent of X2,X3 
and g is independent of 11,14. The decoder finds the pair (xi,xi) that minimizes /(ii,X4) 
and (independently) the pair (£2,13) that minimizes g(x2,x.3). Thus decoding complexity is 
quadratic in the size of the signal constellation. 

The main issue with QOSTBCs is that they do not have full diversity. However, as we 
will discuss in Chapter 4 a number of full-rate, full-diversity codes can be constructed by 
multiplexing quasi-orthogonal STBCs. We show that codes with this type of structure admit 
fast ML decoding algorithms based on conditional optimization. Next we will consider other 
methods for design of STBCs. 

1.4 Design Criteria for Space-Time Block Codes 

Under the assumption that perfect channel state information is known at the receiver, Tarokh 
et al. [10] developed the following two design criteria for the high SNR regime. 

• Rank Criterion: Maximize the diversity gain, i.e. the minimum rank r of the codewords 
difference X, - X, over all distinct pairs of space-time codewords X,. X,. 

• Determinant Criterion: For a given diversity r, maximize the coding gain, i.e. the 
minimum product of the nonzero singular values of the difference X, - Xj over all 
distinct pairs of space-time codewords X,, X;. 

If r = 71, for all pairs (X,. Xj). we say that the code is full rank. If X is full rank, we have 

dct(A,j)^0    for all    AtJ (1.24) 

where A,; = (Xi - Xj)(X, - Xj)f, and we say that the code has full diversity. This means 
that we can exploit all the 11,11, independent channels available in the MIMO system. 

1.5 Algebraic Space-Time Block Codes 

In order to increase reliability. STB codes are designed to have full diversity with a large 
minimum determinant. Such codes can be constructed by looking at matrix representations of 



algebraic objects such as Galois fields and cyclic division algebras. In this section, we give 
descriptions of this class of codes which have become known as perfect space-time codes. 

An interesting result of our research is that these perfect codes can be seen as multiplexed 
quasi-orthogonal designs, (see Chapter 3 and Chapter 4). which admit fast ML decoding algo- 
rithms. The most important of these codes is the 2 x 2 MIMO system known as the Golden 
Code. 

1.5.1 The Golden Code 

The Golden Code [22] is a 2 x 2 block space-time code that encodes four complex symbols 
over two time slots and achieves full diversity. It is known to be the best 2x2 STBC in 
having the largest coding gain. It achieves a trade off between rate and reliability for both one 
and two receive antennas that is the best possible in terms of the diversity-multiplexing bound 
derived by Zheng andTse [13]. In fact, the Golden Code is incorporated into the IEEE 802.16e 
(WiMAX) standard [23]. 

Codewords in the Golden Code lake the form 

1    to.  0\ /  Xi + TX2     x3 + TX.A 

y/5 V° "•) V('T3 + 't3M) Xl + tiX2J ' 

where {a;}*= | € C C Z[j] are the transmitted symbols, and C is a signal constellation taken to 
be 2m-QAM. The parameters r = (l + \/5)/2and/i = (l-\/5)/2 are the Golden Ratio. The 
diagonal matrix diag[a, a], where a = (1 + t/x), Q = (1 + tr), serves to equalize transmitted 
signal power across the two transmit antennas. The entries of Golden Code codewords are 
drawn from Z[?'][\/5] C Q(i, \/5)- Note that Z[i][\/5l is the ring of elements of the form 
(n\ + 1TI2) + (ri3 + in.4)\/5, ni € Z and Q(i, \/5) is the field of elements of the form 
(ai + 102) + (03 + 104), at £ Q. Following [24] we rewrite (1.25) as 

- (0 a) [(£ S) + (51) (Z 2)] • 
The set of integer matrices of the form 

(x y\ 
\iy xj x,yeZ[i}. (1.27) 

forms a matrix representation of the cyclotomic ring Z[(«], where (s is a primitive 8lh root of 
unity. This can be seen explicitly by making the identification 

pi) 
and for simplicity, we will drop the subscript and write C, = £s. 

The cyclotomic ring Z[C] is the ring of algebraic integers in the cyclotomic field Q(0 and 
any element of this field can be written in the form 

a = a0 + aiC + a2C2 + a3C3. (129) 

with ao, ai, 02, a-j £ Q. The identification (1.28) extends to the matrix representation 

f ao + ia2    ai + ia3\ 
a ^ A° = [i(ai + ia3)  ao + ia2)- 

(1"TO) 



Q(v/2) Q(i y/2) 

Figure 1.3: The subfield structure »/Q(C) 

The field Q(C) is a Galois extension of degree 4 over Q with Gal(Q(C)/Q) = Di. the 
dihedral group of order 4. There are four field automorphisms. a}, j= 1. 3, 5. 7, given by 

*>(0 = cJ. (1.31) 

In fact, Gal(Q(0/Q) = (<T3,<rs)- The subfield structure of Q«) is shown in Figure 1.3, 
where we note that (' = i, < - C3 = \/2 and Q + <3 = i\/2. Given any element a e Q«). 
the field norm is defined by 

»€(W(Q(C)/Q) 

= ("o + a2)2 + («i + o-l)2 + 4aia3(oo - a*) + 4a0a2(o3 

In terms of the matrix representation (1.30) wc see that 

WQIO/QW = \det(Aa)\2. 

In fact, in terms of the relative norm NQ{C)/Q(,I)< which is defined by. 

N<HO/<M)(a) = 0-1(0)0-5(0:), 

we have 
^Q(C)/Q(i)(a) = det(Aa). 

Another norm on Q(0 we will find useful is defined by 

a?) 

{al(a)a7(a) + a3(a)aa(a)) 

= a0 + a2 + Oj + o3 

\Aa\ 

where 

2 II-"«IIF ' 

denotes the matrix Frobenius norm. 
The Golden Code can be written in the form 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 



where 

ft=(SS)     and    A—i(5°) (1.40) 

The matrices Bi and Z^ satisfy 

IV (ftBj) = 5«y, (1.41) 

for i.j = 1,2. A consequence of the structure of the Golden Code is that for any two code 
words X, and X; their difference X; - Xj is rank 2 and 

det(X, - XJ)(X1 - XJ* > 16/25. (1.42) 

An observation that may potentially lead to fast decoding algorithms for the Golden Code 
is that the cyclotomic ring Z\(] C Q(C) is a Euclidean domain with respect to the field norm 
NQ(Q/Q- We refer the reader to the survey of cyclotomic Euclidean number fields by Akhtar 
(25] for more details. The observation that Q(() is Euclidean goes back to Eisenstein in 1850. 
Thus, for any two elements of 0, 6 € 1\C] with 6/0, there exist g, r € 1\C\ such that 

a = qb + r, (1.43) 

with r = 0 or Nq{c)/Q(r) < NQ(O/Q(6). In fact, we have 

q = [a/61     and    r = a - [a/616. (1.44) 

where for any a e Q(C). we define [a] € 2\Q by 

Lai = Laol + |ailC + MC2 + LoslC3, (1-45) 

where for x € R, \x\ denotes the nearest integer to x. The Euclidean algorithm in Z[£] enables 
the efficient computation of a greatest common divisor for any pair of cyclotomic integers a, 
6 e Z[£). This provides the basis for possible fast decoding schemes based on the extension 
of an inhomogeneous Diophantine approximation schemes such as Cassel's algorithm [26]. 
Research in this area is ongoing. 

Finally it is interesting to note that the IEEE 802.16e specifications include three MIMO 
profiles having 2 transmit antennas, from which two are defined as MIMO schemes on both the 
down-link and up-link transmission of mobile WiMAX systems. The first one is the Alamouti 
code, which is described in Section 1.3.2, namely. Matrix A, which achieves full transmit 
diversity at the expense of rate loss. The second one is spatial multiplexing, namely Matrix B, 
which achieves full rate at the expense of diversity loss. On the other hand, the third MIMO 
profile with two transmit antennas in IEEE 802.16e specifications, known as Matrix C, is both 
a full-rate and full-diversity code. More specifically. Matrix C is a variant of the Golden Code. 

1.5.2 The Pefect Space-Time Block Codes 

One of our aims is the development of polarization-time codes for fully polarimetric MIMO 
systems. For this application we need codes which have similar properties to the Golden Code 
but which are appropriate for more than 2 transmit antennas. The Perfect space time block 
codes will turn out to be very good candidates. 

Perfect STBCs were first introduced by Oggiere et a). [7] to have full-rate, full-diversity, 
non-vanishing determinant and to be information lossless.  These codes are constructed for 

l() 



2x2, 3x3, 4x4 and 6x6 MIMO systems. An example of a 2 x 2 perfect STBC is the 
Golden Code. The following are descriptions of 3 x 3 and 4 x 4 perfect STBCs. These are 
written in a novel form that we have introduced in order to assist in the development of our fast 
decoding algorithms which are discussed in Chapter 3. 

3x3 Perfect STBC: The perfect 3x3 STBC transmits nine complex (usually from an 
TV-HEX constellation) information symbols {xi}?.-1 over three time slots from three transmit 
antennas. The transmit codewords of the 3x3 perfect STBC can be expressed as 

2 / Z3i + 1       ^3i+2     Z3i + 3\ 

X = V]Bl+i    J*31+3   x3,+ i    3:3,12] ( 1 .46) 
,    ,, \j^3i + 2   JX3H3   X3i+lJ 

where the diagonal matrices B, are 

Bx = (i+j)i3 + e 

B2 = (-l-2j)l3+jB2 (147) 

B3 = (-l -2j)l3 + (l+j)6 + (l +j)B2 

with 0 = diag(0i,02)03),0i = 2cos(2'^/7), j = e2ni/3. The B, satisfy 

TriBjBl) = 7d",„, (1.48) 

4x4 Perfect STBC: The 4 x 4 perfect STBC transmits 16 complex (/V-QAM constellation) 
information symbols {x, }|£j over four time slots from four transmit antennas. The codewords 
can be expressed as 

E* 
(I4.H X4, + 2 X4i + 3 Z4i + 4\ 

lX4i+4 X41+I X4it-2 X4i+3 

IX4, + 3 1X4, + 4 X4. + 1 X4, + 2 

lX4i + 2 JX4i+3 lX4i + 4 X41 + 1/i 

(1.49) 

where 

S, = (1 -3i)I4 + iG'2 

B2 = {\ -3i)e + K-)3 

B3 = -iU + (-3 + 4i)6 + (1 - i) 

BX = (-1 + i)h - 36 + e2 + e3 

(1.50) 

with 6 = diag(0i,02,03,04),0i = 2cos(2l7r/15). The Bx satisfy 

,l\(BJBl) = l56J„, (1.51) 

1.5.3 Multiplexed Alamouti Blocks 

One approach to high data rates is to multiplex Alamouti blocks where a high rate space-time 
code might be constructed as a "linear" combination of Alamouti blocks. These codes are 2 x 2 
STBC with full-rate, full-diversity and have the structure that allows fast maximum likelihood 
decoding which will be discussed in detail in Chapter 3. 



Hottinen-Tirkkoncn-Kashaev [27, 28]: These authors considered the 2 x 2 full-rale, full- 
diversity STBC which has the form 

where {xi}* 

:-(2"5M:"3) 

-(o  ?).  (SH'(S) <'••«> 
and 

which is a unitary matrix. This code is also known as the Silver Code [29], 

Sezginer-Sari [301: Sezginer and Sari proposed a full-rate, full-diversity 2 x 2 STBC which 
can be expressed as 

/aa;i + 6x3  -cr2 - dx'A 
A _ ^0x2 + 6x4     cx\ + dx%) (lM> 

where a, b. c and rf are complex-valued design parameters that are chosen to optimize coding 
gain. In terms of the transmitted power, Sezginer and Sari have expressed the desired condi- 
tions as 

H2+|6|2 = l = |r|2 + |d|2 

(1 -56) 
\a\2 + |c|2 = 1 = \b\2 + \d\2 

The first condition ensures an equal transmit power at each symbol time, while the second 
condition ensures that equal total power is transmitted for each symbol. These conditions 
imply that all the design parameters should have the same magnitude, i.e. 

\a\ = |fr| = |c| = |d| = 1A/2 (1.57) 

Rabiei-AI-Dhahir [31]: These authors have considered a full-rate, full-diversity STBC for 2 
transmit antennas which takes the form 

\at2X3 - P2X4 fh.X\ + a2x2J 

where ai,Q2,0\ and (h are real design parameters chosen to guarantee that the code is an 
information lossless STBC and to maximize its coding gain. For this purpose, the following 
conditions must be satisfied 

f «i + &\ = 1 
3(eti,/3i,a2,#2) € R    such that I  a\ + 0l =1 (1.59) 

I  Q1Q2 - /3i/32  = 0 
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1.6 Multiple-Antenna Channel Capacity 

One important aspect of the use of STBCs is their effect on the capacity of the communication 
channel [32, 19. 33, 34]. That is. if we insist on using a particular STBC do we degrade 
the channel's capacity to carry information. In this section wc briefly discussed the mutual 
information and capacity of a MIMO system which will be useful for later discussion on system 
performance, particularly for polarimetric channels. 

Consider a MIMO Gaussian channel characterized by a fixed n, x nt complex matrix H = 
[hi}], where htJ is the complex number representing path gain between transmit antenna i and 
receive antenna j. At each symbol time, the n, -dimensional receive signal vector is represented 
by 

y = Hx + n (1.60) 

where x is the /((-dimensional transmitted vector and the noise n is a Gaussian vector with 
nr i.i.d. components. Assuming that the vector x has circularly complex Gaussian distributed 
components and H is deterministic. Teletar [2] showed that the mutual information can be 
expressed as 

/(x:y|H) = log, del Un< + ^HQH1) (1.61) 

where I„, is the nr x n, identity matrix, a2 is the variance per real dimension of the noise n 
and Q is the covariance matrix of x, 

Q = E[xx*}. (1.62) 

When H is known perfectly at the transmitter, then the mutual information can be optimized 
with water-filling [2, 35] to give the capacity 

C =       max       I(x,y) (1.63) 
Q.Tr{Q)<P* 

where l'x is the maximum power available at the transmitter. 
Consider the case where the channel state information, H is perfectly known only at the 

receiver. Teletar [2] conjectures that when the channel matrix is random, non-ergodic. then in 
the high SNR region, the optimal covariance matrix for the source is given by 

Q,.pl = (Px/nt)I7„. (1.64) 

The corresponding mutual information is 

I(x;y) = log2det (l„, + -HHf J (1.65) 

where p = Px/2cr2. The channel capacity is then given by 

C= EH log2detVl„, + ^-HHM (1.66) 

where the expectation E is taken over the possible channel matrices H. 

I * 



1.6.1 Space-Time Coding and Channel Capacity 

Consider a M1MO system with nt transmit and re, receive antennas. A space-time code X 
represents a STBC codeword to be transmitted from rij transmit antennas, extending over T 
time slots. The case T = 1 is just spatial multiplexing. The n, x T received signal matrix is 
given by 

HX +W (1.67) 

where W 6 C' xl is the additive white Gaussian noise matrix with entries distributed as 
CA/"(0,2(T2). 

In order to understand the impact of the STBC on channel capacity, a new capacity C can 
be derived with the induced (equivalent) channel matrix. To this end we first rewrite (1.67) as 

il Hx + n (1.68) 

where y is the Tnr x 1 received signal vector and x is a vector of information symbols and H 
is an equivalent channel matrix. Then the capacity of the new equivalent channel H is given 
by 

ilog2detflT„, +-WW+ 

I V n> 
C = Er (1.69) 

If C = C in equation (1.66) then the STBC X is described as information lossless. An example 
of an information lossless code is the Alamouti code for a 2 x 1 MIMO system. 
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Chapter 2: Bayesian Approach to Interference Cancellation 

The famous space-time block code discovered by Alamouti [14] is a remarkable signaling 
scheme as it allows simple maximum likelihood (ML) decoding. The Alamouti code also 
facilitates higher data rates through multiplexing of parallel data streams and the addition of 
a second antenna at the receiver that performs interference cancellation. In this chapter, we 
consider interference cancellation for multiple Alamouti schemes using a Bayesian approach. 

Interference cancellation for two Alamouti users has been studied and analysed previously 
in [36, 32. 37]. Here we want to be able to extend this two Alamouti scheme to more complex 
and varied situations and in particular to use it with polarization diverse transmit and receive 
antennas. Our Bayesian approach provides a unified framework with which to understand the 
relationship between various signal detection techniques and leads to a new parameter which 
can be used to predict the performance of the Alamouti scheme system without needing to 
resort to simulations. 

2.1 System Model 

The encoding rule for the Alamouti STBC is described by a 2 x 2 matrix 

<*.*»>-(-3 3) 
where the rows represent different antennas, the columns represent different time slots, and the 
entries are the symbols to be transmitted. 

Consider two co-channel users, each using the Alamouti code. Let c = (xj,,i2) and s = 
(x3,X4) be the codewords transmitted by the first and second users respectively: rtJ is the 
signal received at the antenna i at time slot j, and htJ denotes the channel gain from transmit 
antenna i to the receive antenna j. The received signals at the two receive antennas can be 
represented as. 

(rii,ri2) = (/in,/?2i) f ^     xl) + (/i3i,'»4i) (x*     xl) + (n"»n") 

(r2i./'22) = (hv2,h?z) f ^     jpj J + (h.32.hi2) (.^     J* J + (1121,1122) 

(2.2) 

where the noise samples ny are independent samples of a complex Gaussian random variable 
with zero mean and variance 2a2. Kquation (2.2) can be rewritten as 

r{ = cHi + sQi + tii (2.3) 

T2  = CH.2 + S02  + «2 

where ri = (ru, -r'l2),r2 = (r2i, -r'22) and 

//in   -h2i\ (hZi   -/14A 
Hl ~ [h2i     h'u)     H* ~ [hn     hit) 

(2.4) 
r       (hi2  -h22\     „       (h.i2  -h\2\ 
Gi - {h22  h-12)  

G* = {h32  hh) • 



Rewrite (2.3) as 
r = cH + aQ + n. (2.5) 

where 
r = (rir2),W = (WiH2)and   Q = (g, Q2). (2.6) 

The problem here is to deteet c and s. The challenge is that the solution involves a great deal 
more computation than the simple Alamouti scheme, particularly for large symbol constella- 
tions, due to cross correlation terms in the likelihood function. 

The Alamouti code is in fact a matrix representation of the Quaternions. Thus the analysis 
of multiple Alamouti codes is facilitated by an understanding of the properties of quaternions 
and quaternion linear algebra. We turn to this now. 

2.2 Properties of the Quaternions 

The quaternions H are a non-commutative extension of the complex numbers. A general 
quaternion can be written as 

9 = <7o + q\i + q2j + <?3fc (2.7) 

where q0, qi, q2,93 € R and i, j and fc satisfy the denning relations 

i2=j2 = fc2 = -1. (2.8) 

ijk = -l. (2.9) 

The conjugate of a quaternion q is defined as 

9* = <7o - q\i - qij - <73fc- (2.10) 

The set HI is closed under addition, multiplication, inversion and conjugation. One can compute 
with the quaternions using these relations just as one does with complex numbers using i2 = 
- 1. The quaternions have a norm defined by 

\\q\\ = VFq=y/(£+ $ + $ + <$• G-H) 
We can also define the real part of a quaternion to be !R(<j) = r/o and note that for any quaternion 

q' + q = 2SR(9), (2.12) 

and 

q* =9  ^=>  q = M(q)- (2-13) 

There is a faithful representation of H in terms of 2 x 2 complex matrices defined by 

90 + qn + Q23 + qsk - \^_g. + £g.   g. _ .g. j . (2.14) 

The 2x2 matrix here has the Alamouti space-time block code structure 

(2.15) 
/   hi   h2\ 
\-h2  hi) 

with/ii = qo + iq\,h-2 = 92 + 193 6 C. Note that in (2.14) we identified the real quaternions 90 
with real multiples of the identity qo!2- Furthermore, it can be seen the quaternion conjugation 
corresponds to Hermitian conjugation for the matrix representation. If H is a matrix of the 
form (2.15), the quaternion properties (2.11)-(2.13) correspond to: 
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[Ql] \\Hf = iTr(//t//). 

[Q2] H1H = ////f = \\H\\2I2. 

[Q3] // + //f = 2»(fti)I2. 

[Q4] // = //f  4=^ H = K(/ii)I2. 

2.3 Properties of Block Quaternion Matrices 

Here we consider some properties of vectors and matrices with entries that are quaternions. 
For example a 2 x 2 quaternion matrix takes the form 

(2  2) (2'6) 

where 81,82,83,84 6 H. If such a quaternion matrix is Hermitian symmetric, i.e. S = S\ 
we refer to S as a quaternion symmetric matrix. Such a matrix has real quaternions on the 
diagonal. 

Theorem 2 A quaternion symmetric matrix S has the following properties: 

jHI I Iff/]. <]2, • • • , </jv 6 M are quaternions then 

(<7i   ll   ... q*N)S(<li  92-.. <7,v)'=Q, (2.17) 

for some real quaternion n. 

[B21 S has real eigenvalues and complete set of orthonormal quaternion eigenvectors. 

[B3] If S is nonsingular then S~ ' is also a quaternion symmetric matrix. 

We note that in the 2 x 2 matrix representation defined in (2.14) quaternion matrices are com- 
plex matrices built from 2 x 2 quaternion blocks of the form (2.15) and that the real quaternions 
are real multiples of l2. Since the represention (2.14) is faithful we can use it to prove algebraic 
relations (as we do below) which are true for the abstract quaternions. 

Proof:   Property Bl follows from the fact that the left hand side of (2.17) evaluates to a 
quaternion a which satisfies a* = a and so must be real. 

Property B2 follows from the fact that S is a complex Hermitian symmetric matrix. Define 
column vectors hi and hz by 

(hi,/»2) =(#1  H2 ... HNf. (2.18) 

The vectors h\ and h? are orthogonal and satisfy \\h\ \\ = \\h2W. We then have by Property 
BI. that the Rayleigh quotient is 

h\Shi _ h]
2Sh2 

hxhi h2h> 
(2.19) 
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Thus, if hi is an eigenvector of S, then ha is also an eigenvector corresponding to the same 
eigenvalue. Overall we can write S as 

N 

S = Y^"jKjK}, (2.20) 

where the N^ are the real eigenvalues of S and where the /V, are the corresponding normalized 
quaternion eigenvectors. The quaternion eigenvectors satisfy K^h'e = Sjjl2- Finally, if S is 
non-singular, then by (2.20), S     is block quaternion symmetric. • 

We note that the relation (2.19) explains the computational "miracle" reported in [36] where 
the filter that estimates c is independent of the interfering signal s. 

2.4 Bayesian Detection 

The model (2.5) described above implies that the likelihood function of codewords c and s 
given the received signal r is given by 

p(r\c,s) = -^ exp (--jL \\r - cH - sg\\2Y (2.21) 

Our prior knowledge of symbols x, is that they are selected from the same constellation C 
independently, and that each symbol in C is transmitted with equal probability. We will also 
assume that the constellation is centered and normalized so that 

E{c\ = 0   and    Eic^c} = I2, 
(2.22) 

E{s} = 0   and    Efs^} = I2. 

From Bayes' rule the posterior probability of c and s given the received data r is given by 

= p(c)p(a)p(r|c,a) 
Ec.eca P(c)p{a)p(r\c, a) 

_ p(r\c,s) 

Ec..€C3P(r|C'*)' 

In the Bayesian approach to decision theory we introduce a loss function L(c, s\c, s) which 
quantifies the loss incurred in deciding the transmitted symbols are c and s when c and s were 
transmitted [38]. Bayesian decision theory then seeks to minimize the expected loss 

p(c,s)=   VJ   L(c, s\c, s)p{c, s\r). (2.24) 
caeC2 

If we take L to be the 0-1 loss function 

i» ...      f0,    if c = cand s = s, _„„ 
L(c,s\c,8)=<,     nthPrwi,P (2-25) 1,    otherwise, 

then p(c. s) is minimized by the maximum o posteriori (MAP) estimate 

(c, s) = argmaxp(c, s\r), (2.26) 
c.sgC2 

is 



and the expected loss is 
p(c,s)=       Yl      P(c.s\r). (2.27) 

(c,*)#(£,i) 

which is the posterior probability of error. If as we have assumed p(c) = 1/|C|2 and p(s) = 
1/|C|2, then (2.26) is equivalent to the maximum likelihood estimate 

(c, s) = argmaxp(r|c, a). (2.28) 
c,«€C2 

Let x = (c s), A = (Ti Q)], then from the likelihood function p(r\c. s) given in (2.21), we 
have 

p(r\c,s) oc exp [ --(x - x)R~l{x - i)' J . (2.29) 

where 

and 

£ = rA1(AA1)~\ (2.30) 

p-t_ i ,t._ i (\\n\\2h   ng< \ R    -^AA-^{ grt   ||c;||2ij- (231) 

where ||||2 = \ IHIp- F°r a given constellation C, the performance of (2.28) in decoding c 
and s is determined by the determinant of fl~'. We have from [39], 

det(/r')= M4jg||4(l-|A|2)2, (2.32) 

where 
HQ 

(2.33) liHiiiieir 
The parameter A is an inner product of two unit quaternion vectors, and measures the angle 
between the desired signal channel vector X and the interference signal channel vector Q. 
We show in Section 5.3 [40] that this parameter is fundamental in the analysis of detection 
performance for multiple Alamouti schemes involving polarization. 

Clearly, the MAP detector in (2.28) involves a complex search for a large constellation, as 
(c,s) € C4. For example, a 24 symbol constellation involves 216 evaluations of the likelihood 
function. This motivates the development of a number of alternative sub-optimal solutions 
which we will discuss from a Bayesian perspective. 

2.5 Bayesian Interference Cancellation 

The motivation behind interference cancellation is that the computation of full MAP/ML detec- 
tion can be reduced if one of the signals, s say, can be canceled out. We would then only need 
to search over c € C2. This implies that we should attempt to marginalize the joint posterior 
distribution for c and s with respect to s. This leads to 

p(c\r) (\    ^2   P(r|c. s) (2.34) 



and the MAP decision rule is 
c = arg max p(c\r). (2.35) 

c€C* 

It is evident that this does not help as the sum over s cannot be evaluated analytically, and 
so the evaluation of (2.34) requires just as many likelihood function evaluations as (2.26) or 
(2.28). However, we notice that if the sum in (2.34) were to be replaced by a Gaussian integral 
the marginalization could be computed analytically. In Bayesian terms, the trick is to forget 
something that we know in order to reduce computation. Instead of using the fact that s lies in 
some constellation, we simply recall from (2.22) that 

E{a} = 0   and    E{sfs} = I2. (2.36) 

The prior for s is then taken to be the maximum entropy distribution satisfying the constraints 
(2.22).   This is the Gaussian distribution with zero mean and unit variance, i.e.   p(s)  oc 

exp (- ^- ). The new prior for s is perfectly consistent with our partial prior knowledge 

of s, it just doesn't represent all that we know. Overall this means we allow some increase in 
the probability of error in detecting codewords c (and s), for reduced computational load. We 
substitute (2.21) and the prior p(s) into (2.26) and marginalize the posterior distribution with 
respect to s to obtain 

p(c\r) oc  /   exp ( - — \\r - cH - sQ\\2 J exp ( -—- J da 

« «<p (-^(c - C)HR~'H\C - c)+J (2.37) 

where 

and 

/T1 = l± &* , (2.38) 
cr2   ^(iieu' + ff*)- 

c= rR^H^CHR'1^)'1, (2.39) 

and we have dropped terms independent of c. 
Since R~ ' is a quaternion symmetric matrix, we have from Theorem 2. 

•HR'^H^ = /i2I2, (2.40) 

where f)2 is real and positive. This is the projection of interference plus noise onto the signal 
subspace. Substituting (2.40) into (2.37) we obtain two independent maximization problems 
for decoding symbols x\ and x-z as 

p(c\r) oc exp (--jrki - ill2 - -^l-*2 - i.2\2 J , (2.41) 

where 
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and 

tf.|tt|!(l- •*•'      ,V (2.43, 

This captures the solution obtained in [36], [32], and will be called the \C solution for conve- 
nience. Note that if Q = 0, then the performance described by (2.43) will be reduced to the 
performance of a single STBC user with 2 receive antennas, that is 

32    _ \\nf _ ||tti f    Wtf 
0ISTBC -    5~~  -  5 r  3—• (2.44) 

a1 (T* a2- 

If either Wi = 0 or Ti.2 =0 then we obtain the performance of a single STBC user with one 
receive antenna. 

Assuming that symbols c from the first terminal have been decoded correctly, the receiver 
then cancels the contribution of the first terminal in the received signal vector r. The receiver 
decodes symbol s by applying MAP decoding (2.28) to the received signal vector after cancel- 
ing signals from the first terminal. This gives 

p(s\r) oc oxp (-yl*3 - i3\2 - y 1*4 - ^f) , (2.45) h - x3\2 - ft2, yl*4 - x4 

')• 

,=i 
1 ,rV 

\Q\\2 
and Pi- IISH2 

a2 

where 

r' = r-cH,     (.f3,x4) =       r^r'01    and    # 
HSU" <T2 

Assuming that the symbols xi and a: 2 have been decoded correctly, we can see from (2.46) 
that the performance for the decoded symbols 3 is equivalent to that of 1 user with 2 transmit 
and 2 receive antennas as previously noted in [32]. The performance for decoding symbols c 
and s is given by 

,2        l|H||4||g||4 / |A|2        \ 
(2.47) 

1 +a2/|" 

At this point we note that it is clearly advantageous to have chosen to cancel the Alamouti 
channel with the lower SNR. Thus, if ||£|| > \\H\\, we would exchange the roles of V. and 
Q in the above algorithm and analysis. We further note that ,TI and x-2 are assumed to have 
been decoded correctly, therefore (2.47) provides an upper bound for the performance of the 
IC solutions. 

Alternatively, symbols s could be decoded in a similar fashion to the decoding of symbols 
c. In this case the posterior probability for s given r becomes 

p(s\r) a exp (-yl*s - *3|
2 - &\z4 ~ **A • (2.48) 

where 

^,rRlg\ (2.49) 

QI = ML (1 _ 

and 

|A| 

o*{\m\2 + a* 
fl"'   =   4-        „2 -' <251> 
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The performance is ihen given by 

te"   ~^""V"i + ff»/ll«?llV ^"1 + aVllwilV • (    ] 

2.6 The Zero-Forcing Decoder 

Naguib and Scshadri [37] show that if 

W=(      l2     ,   ~GlG*l\ (2 13) 

where 

then 

-'(s)-(a)-cf*)(!)+(s)- 
W' = Hi - GiG^Hi   and   0'= Ca-WaWrHn. (2.55) 

The matrix 11' transforms the problem of joint detection of two co-channel users into separate 
detection of two individual space-time users. Furthermore, the algebraic structure of the block 
space-time code (closure under addition, multiplication and taking inverses) implies that the 
matrices H' and Q1 have the same structure as the matrices Hi, H2, Gi and Q2. Now the new 
noise vectors n\ and n'2 are correlated, and if we take these correlations into account and 
design the optimal detector we would just be back to (2.26). The key to reducing computation 
is to again forget something that we know. In this case we forget that the noise vectors n\ and 
n'2 are correlated and replace the joint distribution of n\ and n2 by the higher entropy product 
of marginals. 

This reduces the problem of joint detection of codewords c and s to four independent max- 
imization problems. That is we have the likelihood of the codewords given the received signal 

P(r\ |c) oc exp f-y|*i " *i|2 - y 1*2 - .f2|
2) , (2.56) 

p(r2|a) oc exp (-y 1*3 - i3\2 - ^\x4 - z4|
2) . (2.57) 

where 

with 

(£.,)=(        t^ ,        /'^ \ (2-58) V||W||2(1-|AP)   ||c7||2(l-|AP)y' 

rf.y*n'(i-iAi») and g;=iigiia(i-iAi3) 

The performance of the zero-forcing decoder for symbols c and s is given by 

13% = IM4"g||4(l-|A|2)4. (2.60) 
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Figure 2.1: Behaviour of'ICfor two users ofAlamouli code, at different SINR 

2.7 Performance Analysis 

First note that the expressions in (2.32), (2.47). (2.52) and (2.60) give the effective SNR when 
estimating c and s. This effective SNR includes both noise and interference. Now consider 
the performance expression described in (2.43) or (2.50), if the power of the interfering path is 
small i.e. if \\Q\\2 -» 0 then ft2 —> \\H\\2 /a2. That is. the performance improves as the inter- 
ference power decreases and converges to that of a single space-time user and a receiver with 
two antennas [36]. Figure 2.1 shows the simulation results which demonstrate this behavior. 

To compare the performance of the three different solutions, we first determine the effective 
SNR of a symbol for each method by taking a fourth order root in (2.32),(2.60) and (2.52), to 
obtain 

SNRMAI- = IIWIMI0II •yrHAp. 

SNRzp = MM(i - |Ah 

SNR, = Mp./fV^^U!- W2       A 

(2.61) 

(2.62) 

(2.63) 

If the channels H and Q are orthogonal i.e. | A|2 = 0 then there is no difference in the perfor- 
mance of the three solutions. From (2.61)-(2.63), it is clear that when |A|2 jt 0, the maximum 
likelihood solution outperforms the zero-forcing and 1C solutions. Furthermore, the perfor- 
mance gap (the ratio or difference in dB for a given error rate) between zero-forcing . \C 
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SNR(dB) 

Figure 2.2: Performance comparison of the three different detection algorithms for two users 
of Mamouti code 

solution and maximum likelihood solution can be explicitly described as follows: 

SNK/,. 
SNRMAP 

SNRK 

SNRMAP 

V^W, 

\ (i-|A|2) 

(2.64) 

(2.65) 

Figure 2.2 shows the simulation results of interference cancellation for two co-channel users, 
each using the Alamouti scheme with 8PSK modulation comparing the three different solu- 
tions. The channels 'H and Q are taken to have the channel separation |A|2 = 0.8 with a 
tolerance of 0.05, or in other words, the angle between the two channels is w 37°. In order to 
show that the performance expressions obtained above are valid, Figure 2.3 shows the result of 
shifting the zero-forcing and IC solutions shown in Figure 2.2 by the performance gap given in 
(2.64) and (2.65) respectively. As shown all curves are now aligned. 
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Figure 2.3: Performance of the three different detection algorithms agree after the SNR is 
shifted by the differences given in (2.64) and (2.65) 

2.8 Generalization to N Alamouti Users 

We now extend the analysis of Section 2 to detection of jV co-channel users using TV receive 
antennas, where each user employs the Alamouti STBC. The generalization of (2.5) is straight- 
forward, and the received signal can be written as 

= ^x„G„ + n (2.66) 

where G„ = (Gn,i,Qn,2>' • * i GI.N) 
are 'he channel matrices from user n to receiver antennas 

1, 2, • • • , N and xn = (xn.i xn,2) is the codeword transmitted by user n. 

2.8.1 MAP/ML Detection 

Let x = (ii,i2,-  • ,xjv)    and    A = (Gi,G2,-- .G,\)' then the posterior distribution 
p(x i, • • • , xN \r) is given by 

p(xi, •• • ,xjv|r) oc exp (-(x-x)R  '(x-xjM 

where R~l = AA* and is obtained by 

(2.67) 

R-1 = 
2<r2 

|Gi||2Ia    G,G2    ...    G,Gf
v   \ 

G2G{     ||G2fl2 ...    GaGJ, 

V G.vGl      GjvGj    ••• ||GN||
2
I2/ 

(2.68) 
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The performance of the MAP/ML detector is determined by 

0ML dot R~' = 

where 

V = del 

with 

lie n4iiG2ir ••IIGA-II'
1 

aAN 

Al,2 

Al.2     ... 

I2       ... 
AI.N\ 

A2.N 

W,N X2N ... h) 

GmG; 

|G„| 

(2.69) 

(2.70) 

(2.71) 

Writing (<7nl, <7n,2) = G„/ ||Gn|| we see that the quantity V is the volume of the parallelotope 
generated by the complex vectors {gn it0n3|n = 1,• • • , N}. It is a function of the pairwise 
quaternion angles between the users. Since the vectors gn , are normalized, 0 < V < 1. We 
refer to V as the normalized channel volume. In terms of V, we can define the signal to noise 
ratio per user symbol as the (2Ar)'h-root of (2.69), that is. 

SNRA/Z. =e(SNRi,SNR2,--- ,SNRjV)V \/N (2.72) 

where SNR„ = ||G„ \\2 /a2, is the SNR of the re* user and Q denotes the geometric mean. For 
the two user case described in Section 2.5, the normalized channel volume V = 1 - |A|2. 

2.8.2 Bayesian Interference Cancellation 

Bayesian interference cancellation in the N user case is analogous to the two user case, al- 
though it becomes tedious to marginalize the posterior probability p(x\,x?, • • • ,XN\T) with 
respect to x because of the multiple integrations. However, since we assume the prior distribu- 
tion for X2,23, • • • . XN to be Gaussian with zero mean and unit variance, we have 

where 

n = 2 / 

R = a2l-2N + ^G*Gn. 

(2.73) 

(2.74) 

Thus, we can write down the posterior distribution p(x\\r) directly as 

p(x\ \r) oc exp (    ?\ -       ,2        02, 
1 -xi.il - Y'Xl'2 X,.2|2) 

where 

&'«-'<*• 

(2.75) 

(2.76) 

and /9 will be computed below.  Note that the reduced MAP decoding now consists of two 
independent maximization problems for decoding symbols si.i and S1.2. 
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In order to judge the performance of this reduced MAP decoding scheme we expand the 
positive semi-definite block quaternion symmetric covariance matrix R' given by 

fl' = ^G;,G„ (2.77) 

in terms of its block quaternion eigenvectors, (See Appendix), so that 

N 

where KJ,K, =0, if n ^ j, and we have normalized the eigenvectors K„ so that ||Kn\\
2 = K„, 

their corresponding eigenvalues. In general some of the K} could be zero and so they would not 
contribute. Thus, we have replaced the Alamouti signaling interferers G„ by an equivalent set 
of mutually orthogonal Alamouti signaling interferers K„. Interference cancellation can now 
be analyzed in terms of these equivalent interferers. 

Applying the Matrix Inversion Lemma [41], the inverse of R is seen to be 

i T      i ^   K„K;, 
R        =  ~^l-2N ^   > 

H.Mf+a2 (2.79) 

and so we have 
|G,||2 /,     ^ |An|

2 

where 

A" = ||G,|i||Kn||- (2-81) 

|An|
2 measures the angle between the desired signal channel Gi and the nlh equivalent inter- 

ferer channel Kn. 
As with the IC algorithm described in Section 2.5, interference cancellation is first carried 

out to separate the user Qj with the highest signal to noise ratio. The transmitted symbols for 
this user are estimated (detected) and then substituted in (2.66) to obtain 

r' - r - SJGJ = ^2 S»G" + n <2-82) 

The above procedure is then repeated with the Alamouti channel having the next highest SNR 
and so on. This algorithm is the counterpart of Foschini's scheme [42] for space-time multi- 
plexing one dimensional signals. Here we are multiplexing 2x2 matrix signals. 

2.9 Summary 

Our Bayesian analysis of interference cancellation provides a unified framework with which 
to understand the relationship between various techniques for signal detection. We obtained 
simple new results for performance analysis in terms of SNR. The analysis also leads to a 
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new parameter which measures the angle between a pair of block quaternion channel vectors. 
This parameter provides new theoretical insight to understanding and being able to predict 
the performance of different decoding algorithms as a function of signal to noise ratio. In 
Chapter 5 we apply this parameter to analyse the performance of various coding schemes for 
dual polarimetric antennas. 
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Chapter 3: Conditional Optimization and Fast Decoding 
Algorithms for Space-Time Block Codes 

The drawback of the full-rate full-diversity STBCs listed in Section 1.5 is the decoding com- 
plexity. The sphere decoder was developed [4.3.44,45] to reduce the computational complexity 
by limiting the search to only within a sphere of given radius. However, the initial radius of 
the sphere depends on the signal-to-noise ratio and the channel condition number. When the 
channel matrix is close to singular, the preprocessing stage of the sphere decoding algorithm 
yields a plane of possibilities rather than a single initial estimate. When this occurs, the lattice 
point search degenerates to an exhaustive search, and consequently the overall complexity of 
the sphere decoder is no better than the exhaustive search. In wireless communication, when 
the channel between base station and terminal is line-of-sighl, the induced channel is rank 1. 
This has motivated us to develop fast decoding algorithms for a number of important codes 
which have fixed low complexity across channel conditions, i.e. across propagation conditions 
from pure line-of-sight to rich scattering environments. 

Our fast decoding algorithms are based on a technique called conditional optimization. This 
technique is used widely in statistical estimation and signal processing to reduce the search 
space of an optimization problem by taking advantage of the possibility of analytically op- 
timising over some subset of the parameters conditioned on the remaining parameters. The 
approach is applied to a large class of full-rate, full-diversity space-time block codes. This ap- 
proach can also be applied in an approximate form to the Golden Code and perfect space-time 
block codes to obtain essentially ML performance with reduced complexity [46, 47] compared 
to exact ML decoding. 

3.1 Two Users of Alamouti Signaling 

In Chapter 2 we considered an interference cancellation approach to the detection of two users 
of Alamouti codes, which provides linear complexity processing with a corresponding trade- 
off in performance.  We show here that such systems have the structure that allows fast ML 
decoding with complexity 0(N2), wherrc Ar is the size of the underlying constellation. 

From (2.3), the received signal for a two Alamouti user system is given by 

(3.1) 
ri = cH\ + sQ\ + ni 

r- = cH-2 + sQi + ri2 

(x3,Xi), 

fhn 1 = [h2i 

-kl\\       r        (hzx -h'4i\ 

kh) •     Sa ~ V'42 

(3.2) 

Interference cancellation as described in Chapter 2 is a suboptimal approach with linear com- 
plexity, [48, 37]. Here we show that two-user ML detection of Alamouti signals is possible 
with complexity 0{N2). 
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3.2 Code Multiplexed Alamouti Blocks 

An approach to constructing high data rate codes is to multiplex existing codes. For example, 
a high rate space-time code might be constructed as a "linear" combination of Alamouti blocks 
[27, 30, 31, 49) of the general form 

where the matrix 
A _   (<fil    <P3\ 

-  y<fi2   <P4J 

is usually taken to be a unitary matrix [SO]. This restriction on A leads to code properties such 
as cubic shaping and information losslessness (see [7] for details on cubic shaping). However, 
we note our fast decoding algorithms do not depend on this property and will work for arbitrary 
non-singular A. 

Remark 1 If A is a unitary matrix of the form 

(3.4) 
Y>2        <Pl/ 

then (3.3) reduces to Alamouti signaling with a non-standard constellation and decoding is 
essentially linear in complexity. One example is Alamouti signaling with 16-QAM viewed as 
a multiplexing of Alamouti blocks employing 4-QAM. However a disadvantage of this con- 
struction is that the value of adding a second receive antenna does not extend beyond noise 
averaging, in contrast to codes such as the Golden Code where it provides additional diversity 
gain. 

A number of codes proposed in the literature are of this multiplexed form. We discuss these 
examples in turn. 
Hottinen-Tirkkonen-Kashacv [49. 27] These authors considered the family of 2 x 2 full- 
rate, full-diversity STBCs as described in (1.52). This code can be expressed in the form of 
(3.3) with 

.        1   / 1 + i    -1+2A „_ 

At the receiver, the received signal is represented as in (3.1) where rHi,H2 are matrices as 
defined in (3.2), and 

n        fgn  ~92i\       r   _ (Q\I  -<722\ ,,,. 
*-U»    rfJ'   g2"U*   a'n) a6) 

where 
(gn,92i) = On,/i2i)A.     (012,522) = (h12. /i22)A- (3.7) 

Sezginer-Sari [30] Sezginer and Sari proposed a 2 x 2 full-rate, full-diversity STBC given in 
(1.55) which can be written in the form of (3.3), 

X =   (flX2 Si)   +   (l    0j   (fox3     -dxl)  ' 0"8) 
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and also leads to the received signal expressions as in (3.1) with 

_ fahn -c"h.2i\ -,   _ /Win ~d"h'n\ 
rtl - \ahn c"h*n) • yi ~ \bh21 d'h'n) 

(ah\2 -c*hv2\ r   _ fbhi2 -d'h'22\ 
Hl ~ \ah22 c'hh) ' *2 ~ \bh22 dVrh) 

(3.9) 

Rabiei-Al-Uhahir [311 Rabiei and Al-Dhahir propose the code given in (1.58) which can be 
rewritten as 

/     XlOtl    I4ftl\ (0    l\   (    X3Q2   X20C2\ 
X- \-x\02 x\(h) + [l 0) {-x^i  xifii) • (310) 

and the received signal can also be expressed as in (3.1) with 

c = (21, X4),     s = (23,25), 

ri =(rii,rja)i    »"2 = (rn.ri), 

_ /   /ii2«i   /IM&N   r   - (   ^2202  'ila/'A 
rt2 _ ^-/122ft.  fciaaij '^2 " ^-fe13/3,   /i22aay ' 

3.3 Fast Optimal Decoding 

As shown in the last section, the decoding problem for all cases takes the form 

T\  = cH\ + SQ\  + Tl\ 

r2 = cli.2 + sQ2 + n2 

(3.12) 

where c and s are vectors of a pair of symbols x, and H\, H2, Q\ and CJ2 are Alamouti blocks. 
Assume that symbols xt, i = 1,.... 4 are selected from some QAM constellation C of size 
N. We now show that exact ML can be implemented with complexity 0(N2). through a very 
simple algorithm. First write (3.12) as 

r = cH + sQ + n (3.13) 

where r = (ri,ra), H = (Wi,^), 0 = (01,02) and n = (711.1x2). The likelihood 
function for (3.13) is 

-xp ( 

and the ML estimate is given by 

~2^2 \\r-cH-ag\\2J (3.14) 

(c, s) = arg max p(r Is, c). (3.15) 
e,»6Ca 

At first glance this optimization seems to involve a search over C4.   However, conditional 
optimization can be applied to optimize (3.14) exactly as follows. First maximize (3.14) with 
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respect to c given s, by expanding (3.14) and completing the square, we obtain 

~2&^r ~sQS) (l4 ~ IFwiiv ^ ~ s^] 

xexp(-M^||c-c(S)f), 

(3.16) 

where 

c(a) =  = , (3.17) 
n\\2 

and ||W||2 = i \\7i\\2F. Thus the ML estimate of c given s is 

c(a) = Q(c(«)). (3.18) 

Substituting (3.18) into (3.14), we obtain the optimization problem for s alone: 

s = argmax \\r - c(s)'H - sQ\\2 . (3.19) 
sec2 

Thus, (3.19) and (3.18) provide an algorithm for obtaining the ML solution of c and s, which 
involves at most \C\2 = N2 evaluations of the likelihood function. That is, we have an 0(N2) 
algorithm for estimating s and c. 

Remark 2 Above we have assumed thai a QAM constellation is used. This is not necessary 
for conditional optimization to provide a computational benefit, but does, along with certain 
other lattice based constellations, provide maximum computational benefit. For an arbitrary- 
constellation the quantization step (3.18) is replaced by a search which is at most 0(\C\), 
while if the constellation is a Cartesian product of two real constellations, i.e. C = 1Z x TZ. 
then this search is at most 0( \/\C\). Finally, if the constellation is a subset of one of a number 
of lattices, such as the QAM or HEX constellations, then the quantization step is 0(1). 

3.4 Conditional Optimization 

In the previous section we used a conditional optimization approach to develop fast ML de- 
coding algorithms for multiplexed Alamouti codes. Here we consider conditional optimization 
from a more general perspective and discuss its application to fast decoding of space-time 
codes. 

Conditional optimization is a technique widely used in statistical estimation and signal pro- 
cessing. The goal of this technique is to reduce the search space of the optimization by taking 
advantages of the possibility of analytically optimiz.ing over some subset of the parameters con- 
ditioned on the remaining parameters, or at least more efficiently than an exhaustive search. An 
archetypal example of this approach is Rife and Boorstyn's [51]. This reduces the parameter 
estimation problem for a single tone in noise, which involves the estimation of three parame- 
ters, to an optimization problem involving only the frequency of the tone. 

In general, suppose that we wish to maximize a likelihood function of the form 

p(r|0) (3.20) 
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where r is some data and 0 is a set of parameters we need to optimize over. If the parameter set 
can be split 0 = (0i. 02) such that optimization over 0\ given 02 can be carried out analytically 
or at least very efficiently, then the optimization problem can be efficiently carried out as: 

02 = argmaxp(r|02,0i(02)). (3.21) 

where 
0i (02) = argmaxp(r|02.0i), (3.22) 

and 0i =0i(02). 
We now consider sufficient conditions under which conditional optimization leads to a re- 

duction in decoding complexity of space-lime codes. Assuming that perfect channel state 
information is available at the receiver, the received signal is given by 

Y = HX + W (3.23) 

where X is the transmitted STBC codeword with code length ']' and entries that are information 
symbols drawn from an /V-QAM constellation, H is the matrix of channel gains from the 
transmit to the receive antennas and n is i.i.d Gaussian noise with zero mean and covariance 
2<7aInrT. 

The received signal can be written as 

r - xH + n (3.24) 

where x is the transmitted information symbol vector and H is the induced (equivalent) channel 
matrix. 

The likelihood function of symbols x given the received signal r is given by 

p(r|ar) ^ exp (--^ ||r - xH\\A . (3.25) 

Taking the prior distribution of symbols x to be uniform on the constellation C,v, we obtain 
the ML estimate: 

x = argmaxp(r|x). (3.26) 

ML decoding is certainly achieved with \C\h computations of likelihood (3.25), but if the 
symbols are taken from an /V-QAM constellation then dramatic reductions in complexity are 
possible. 

Theorem 3 If the induced channel matrix Ti has rn rows which are mutually orthogonal, for 
all channels H, then exact ML decoding can he implemented with complexity 0(N     m). 

Remark 3 It follows thai in all cases the complexity of exact ML decoding is at most 0(Nh " '). 

Proof: Let H\ be the sub-matrix consisting of m mutually orthogonal rows of the induced 
channel matrix H and let Ti.2 be the matrix consisting of the remaining rows. We can then 
rewrite (3.24) as 

r = i,Hi +X2W2 + n (3.27) 
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where x\ is ihe 1 x 771 vector of complex symbols corresponding to the rows in H\ and 12 
consists of the K - m remaining symbols. The likelihood function associated with (3.27) is 

p(r\xux2) oc exp f -.J-J \\r ~ X1H1 - x2H2\\2\ • (3.28) 

We have isolated x 1, as our approach is to maximize the likelihood function (3.28) with respect 
to xi given x2, and then maximize the resulting partially optimized likelihood function with 
respect to x2. Now since the rows of Hi are mutually orthogonal 

HiH\ = D, (3.29) 

where D = diag(df, • • • ,d^), and dt is the norm of the _/',h row of Hi- The likelihood 
function (3.28) can then be written as 

p(r\xux2)cxexp(-~(r - x2H2) (l - H\D-lHi"j (r - x2H2)^\ 

ii(x2) = (r -x2H2)H\D-1. (3.31) 

(3.30) 

where 

Thus, given x2 

(3.32) 
xi(x2) = (Q(fi(x2)).--- ,Q(xm(aB2))), 

= Q{ii(x2)), 

maximizes (3.30). Substituting (3.32) into (3.30) we obtain the optimization problem for x2: 

x2 =  argmin   \\r - ±i(x2)Hi - x2H2\\2 , (3.33) 

which can be substituted back into (3.32) to obtain the ML estimate of xi 

x\ = ii(x2). (3.34) 

Thus, equations (3.33) and (3.34) provide an algorithm for obtaining the ML estimate of Xi,i = 
1 K, which involves at most Nh ~m evaluations of the right hand side of (3.33). • 

We see that for codes satisfying the conditions of Theorem 3. conditional optimization re- 
duces the search for the ML estimate to optimization of the objective function in (3.33) over the 
symbols in x2. This reduced search can be carried out by any means, in parallel, sequentially, 
by tree search and/or using sphere decoding. We will further elucidate its relation to sphere 
decoding in Section 3.5. For non-square QAM see Remark 2. 

Remark 4 If X\ and x2 are vectors of real symbols, then the above analysis holds with the 
following modifications. Firstly, in Theorem 3 "mutual orthogonality" of the rows ofH (see 
Equation (3.29)) is replaced by the condition 

HiH\ +HXH\ = D. (3.35) 

Secondly, Equation (3.31) is replaced by 

xi(x2) = (rH\ + rH\ - x2(H2H\ + HiH\)) D~\ (3.36) 

(Here    denotes complex conjugate.) 
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3.5 Relationship to Sphere Decoding 

The idea of sphere decoding is to search only within a sphere or ellipsoid of a certain size 
defined by the induced covariance matrix and the SNR. Suppose for a given decoding we have 
determined that we need only search symbols that lie within the ellipsoidal region 5 C CK, 
defined by the equation 

S:     iR"V<p, (3.37) 

where R is a diagonal positive definite Hermitian (symmetric, if x is real) matrix and p > 0. 
Having decided on a sphere the reduced decoding problem becomes 

x = argmaxp(r|x). (3.38) 
x£CKns 

In Theorem 3 we split the code vector x into two parts, xi associated with the m mutually 
orthogonal rows ot"W, and x-2 associated with the other K - m rows of H. Let x be a general 
vector in C    and define U2 : C •C by 

xUi = x2. (3.39) 

so that II2 = U2U2 is the orthogonal projector on the "12" subspace. Similarly, we can define 
an orthogonal projection II] = U\U\ onto the "Xi" subspace. If x € 5, then X2 is contained 
in the region 

Su2 : x2 (ulR~1Ua}xl < p, 

where U}R-lU2 6 c(h'-m)x(A'^m). 

(3.40) 

The optimization problem for xi thus reduces to 

\r - ii(i2)Hi X2 =      argmin 
i2a

,,(-",nSn, 
X1H1 (3.41) 

•>x2 

S\\ 

X, 

Figure 3.1: Relationship to sphere decoding 
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The situation is illustrated in Fig. 3.1, where the axes labeled x\ and Xi represent the two 
subspaces defined by the orthogonal projections Hi and VL%. The grey points represent the 
projection of the full constellation CK onto the II2 subspace. The projected constellation is 
searched over the projection of the sphere S onto the subspace IL.>, that is S\\2. 

Clearly, the method of conditional optimization can be naturally integrated with sphere de- 
coding in a simple way leading to a sphere decoding algorithm with worst case complexity 
corresponding exactly to that of our direct algorithm in (3.33)-(3.34), that is 0(|C|K_m). 

3.6 Fast Decoding of the Golden Code 

It has been shown recently that the ML decoding complexity of the Golden Code is cubic in 
the size of the underlying QAM constellation for an arbitrary A'-QAM constellation [46, 52). 
In Chapter 4 we show that if a square QAM constellation is used then the complexity of exact 
ML decoding is further reduced to 0(N2y/N). Here we apply the conditional optimization 
approach to the Golden Code to obtain a simple approximate quadratic complexity decoding 
algorithm with essentially ML performance. For a large constellation, this is a significant re- 
duction in complexity when compared to 0(N

2
T/N). The algorithm can be employed by 

mobile terminals with either one or two receive antennas and it is resilient to near singular- 
ity of the channel matrix. Dual use is an advantage, since there will likely be some IEEE 
802.16 mobile terminals with one receive antenna and some with two antennas. The key to 
the quadratic algorithm is a maximization of the likelihood function with respect to one of the 
pair of signal points conditioned on the other. This choice is made by comparing the determi- 
nants of two covariance matrices (or equivalently, the norm of two channel vectors), and the 
underlying geometry of the Golden Code guarantees that one of these choices is good with 
high probability. 

3.6.1 Model and Decoding Problem 

The Golden Code is a 2 x 2 block space-time code that employs 2 transmit and 2 receive an- 
tennas and encodes four complex QAM symbols over two lime slots yet achieves full diversity 
[22, 53, 54] and is incorporated in the IEEE 802.16 standard. As described in Section 1.5.1 the 
codewords in the Golden Code take the form 

_ fa 0\ /  X\ + TX2     x3 + T.T4\ 
• ~ ^0 aj y(x3 + ^x4) xi + fiX2) 

(a ()\ |"/xi   x3\      (T 0\ (X-2   x4\ 
~ yO a)    \ix3 xi) + [0 fij [ix4 x2) 

(3.42) 

where {x}j_, £ C C Z[i] are transmitted symbols, and C is a signal constellation taken to be 
2m -QAM. The parameters r = (1 4- \fi>)/2 and/x = (1 - \/5)/2 are the Golden Ratio. The 
diagonal matrix diag[a, a] where a — (1 + i/z)/\/5, a = (1 4- ir)/\/5 serves to equalize 
transmitted signal power across the two transmit antennas. 

Let (n 1. ria) and (rai, raa) be the two received signal vectors at the first and second receive 
antennas and the components are the signals received over two consecutive time slots. The 
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received signal can be represented as 

(rii.rV2) = (ahu.afai) UX3 ^j) + (rhu, ^21) (^ X2J + (nu.Bu), 

tx3 xj + (Tfli2,(J-h22) [ix4 X2) + (ni2,n2a), 

where ntJ are complex Gaussian random variables with zero mean and variance 2a2. Equa- 
tion (3.43) can be rewritten as: 

(rii,ru) = (n,i3)   ifihj)  a/lll)
+(T2,T4)(^21  rhu J + (B»»B»)' 

(3.44) 
, .      , . /a/112   a/122 \   ,  , , (rhvi   Iih22\   .  , v 
(r21,r22) = (ii,x3)^aAa2 Q/ll2J+(X2';E4)^/l22 r/ll2J+(n2i,n22). 

Given that the channel gains /itJ are known at the receivers and each symbol is transmitted 
with equal probability, optimum decoding is provided by the maximum a posterior MAP/ML 
estimate as follows. We can rewrite (3.44) as 

r = cH + sQ + n (3.45) 

where 

r = (m.ria.rai.raa),    n = (nu.ms.nai, 1122)1    c = (a'i,x-3),    a = (x2,xt). 

_ /a/in   a/121   a/ii2   a/122 \       c_ (onh\\   a^/i2i   ar/?i2   a/i/122 
— I «i/i2i   afcn   iah22  och\2) ' ~ I tap/121   ar/in   iafj,h22  or/1.12 

(3.46) 

The likelihood function of codewords c and s given the received signal r is 

p(r|c,s) xexpf--^ ||r - cH - sQtf} . (3.47) 

Taking the prior distribution of the symbols c and s to be uniform on the constellation C, we 
obtain the maximum likelihood estimate: 

(c, s) = argmaxp(r|c. s). (3.48) 
c.agC2 

3.6.2 Quadratic Decoding of the Golden Code 

In this section we show that decoding the Golden Code with essentially ML performance can 
be achieved with a simple algorithm which is quadratic in size of the underlying QAM signal 
constellation. Our approach is an extension of ideas used to derive the fast optimal algorithm 
for multiplexing orthogonal designs described in the Section 3.3. 
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Optimal Decoding: 0(N3) 

We begin by rewriting (3.44) as 

r = xih + xH + n. (3.49) 

where r is defined in (3.46), x = (x2,x3,x4), h = (ahu.ahn, 0/112,0/122) and 

/ or/)n   Qfili2i    ctrh\2  aph22\ 
H = I   iahi\     a/in    io/i22    0/112 1 . (3.50) 

\io/i/i2i  or/in  iap.h.22  arhn) 

The likelihood function associated with (3.49) is 

/        1     || ~||2\ 
p(r|xi,x2,x3,x4) oc exp 1-^-^   r - nh - xH\\      . (3.51) 

V    2a   » " ) 
We have isolated X\, as our approach is to maximize the likelihood with respect to X\ given x, 
and then maximize the resulting partially optimized likelihood with respect to x. To this end, 
we rewrite (3.51) in the form 

p(r|xi,x) occxpf -7^2(7 -xH) (I, - ——^ J (r - iH)'! 

ii(x)H2), -§?!*» 
(3.52) 

where ||/i||2 is a Euclidean norm and 

_  .   ,      r/if - xHh] 

X1{X)= ||fc||»        ' (3'53) 

Thus, given x, 
xi(x) = Q(xi(x)), (3.54) 

maximizes (3.52). 
Substituting (3.54) into (3.51) we obtain the optimization problem for a:: 

x = argmin \\r - xH - xi(x)h\\   . (3.55) 

The ML solution is then (xi,X2,X3,X4) = (xi(x),x). Thus (3.54) and (3.55) provide an 
algorithm for obtaining the ML estimate of Xi,i = 1,... ,4, which involves at most N3 

evaluations of the right hand side of (3.55) since there are N3 possibilities to choose the symbol 
set (x2,x3,i4) and 0(1) complexity for calculating the symbol x\ from (3.53) and (3.54). 
Thus we have an algorithm with ML performance with a complexity 0(N3), where N is the 
size of the underlying QAM constellation. 

Optimal Decoding: 0{N2\/N) 

See Section 4.4.1. 
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Essentially Optimal Quadratic Decoding: 0(N2) 

Consider the likelihood function given in (3.47). We can optimize (3.47) in two steps, i.e. first 
maximize with respect to s given c or vice versa. Suppose we maximize with respect to s 
given c. We first write (3.47) as 

p(r|c,«)« exp(-^{r - cH)(h - GHG&VlG)(r - cH)M 

x exp (~^~2(s - s(c))QQ'(s - i{c)A 

(3.56) 

(3.58) 

where 
J(c) = (r-cW)et(Set)-1. (3.57) 

We now make what is essentially a zero forcing approximation, since GG1 is not generally a 
multiple of the identity. We take 

i(c) = Q(a(c)) 
= (Q(51(c)).Q(52(c))). 

Substituting (3.58) into (3.47) we thus estimate c and s as follows: 

c = argmin \\r -cH- s(c)G\\2 , (3.59) 
c€C2 

s = Q(S(c)), (3.60) 

where s(c) are given in (3.57). 
Alternatively, if we reverse the roles of c and s, we obtain the estimate 

s = argmin ||r - c(s)H - sG\\2 , (3.61) 
»€C2 

c = Q(c(«)), (3.62) 

where 
c(«) = (r- sG)H\HH1y\ (3.63) 

and 
c(s) = Q(c(s)). (3.64) 

Thus, we have two possible decoding solutions (3.59) and (3.61). Of course, if Hl-O and 
GG^ were multiples of the 2x2 identity matrix, both optimizations (3.59) and (3.61) would be 
exact ML, and we would not need to make a choice. However, as we are making a zero forcing 
approximation, we need to choose the best alternative for each channel. In order to make the 
best choice, let's first consider the following covariance matrices 

^-(fl)^-^?) 0.65) 
where 

a=H2||/i1||
2+|a|2||/l2||2 (3.66) 

a = |«|2||M2 + |a|2||/i2||
2 

b = -iaa" (h\\h.2i + huh'22) + aa' (h,2ih"u + /122/112) 
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where ||/».||'2 = \hn\2 + \hl2\2. The accuracy of ihe quantization in (3.60) and (3.62), de- 
pends on both the determinant (which determines the SNR) and the condition number (which 
determines the accuracy of the zero forcing approximation) of T-fhO or (JcJt. The following 
compares the determinant and the condition number of fCW and QQ\ 

HH* go* 

Determinant 

Condition Number 

a2 - |6|2       a2 - \b\'2 

-v _ £±IM   ~ _ «±iy 
7  ~~   a-|b| '   _   a-|6| 

Fortunately, it can be seen that for T-ChO and QQ^ the matrix with the largest determinant 
also has the smallest condition number. Thus, we have a clear choice: i.e. if 

dei{QQ1)>&et(HH'<). (3.67) 

then we estimate c and s using (3.59), otherwise, use (3.61). 
The condition (3.67) is equivalent to S > a, which in turn reduces to 

||M2>||Ma. (3-68) 
The simulation results presented in Fig. 3.3 show use of our fast decoding algorithm involves 

little loss in performance compared to the optimal ML decoder. We gain some understanding 
of why this is by examining the joint behavior of the condition numbers for 7CH' and QQ\ 7 
and 7. We find empirically that for i.i.d. Gaussian channel coefficients, although the condition 
numbers 7 and 7 can individually be large, the minimum of the two (min(7, 7)) has a very high 
probability of being small. Fig. 3.2 shows the distribution of min(7, 7), for 106 realizations. 
The largest value of min(7,7) obtained in the 10(' realizations was approximately 17.5. This 
corresponds to a ratio of the lengths of the major and minor axes of the noise ellipse of \/17.5 =s 
4.18. 

Note that the minimum condition number is not bounded above. If equality holds in (3.68) 
then there is a common condition number, and when the magnitudes of the channel gains are 
approximately equal, and their phases are aligned, then this condition number can be made 
arbitrarily large. This however is a very improbable event. 

To sum up. the algorithm involves one of two possibilities: 

ifiifciir >n/»2 

otherwise. 

where 

c = argmin \\r - cH - s(c)Q\\   , 

S = Q(5(c)), 

s = argmin ||r - c(s)7i - sQ\\ 
see' 

c = Q(c(«)), 

S{C) = (T -cH)g\Q9*r\ 

b(s) = (r - aOytfiUH!)-1. 
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Figure 3.2: Empirical distribution 0/111111(7,7) 

This algorithm involves only N2 evaluations of the argument of (3.59) or (3.61) compared to 
theO(/V3) ML algorithm. As the simulation result shows in Figure 3.3, the loss in performance 
compared to ML is negligible. 

The algorithm works equally well when there is only one receive antenna. In this case the 
decoding problem becomes 

r = ch + sg + n, (3.69) 

where r = (rn,ri2), n = (nii,«i2) and h,g are defined in (3.44). The algorithm applies 
with h, g in place of H. Q. 

3.6.3 Simulation Results 

We compare the performance of the fast decoding algorithm (Quadratic Decoder) described 
in the last section with the ML decoder. The channel is assumed to be known at the receiver. 
The elements of the channel matrix are modelled as samples of independent complex Gaussian 
random variables with zero mean and variance 0.5 per real dimension. The noise is complex 
white Gaussian with z.ero mean and variance 2a2. The signal to noise ratio at a receive antenna 
is defined as 

SNR(dB) = 10 log IO(2aO (3.70) 

where Ps is the (average) signal power per symbol at a receive antenna which is defined as 

ps = E.(||WH
2
 + nef) (3.71) 

and Es is the average energy per symbol. 
Figure 3.3, shows the symbol error rate for 4-QAM and 16-QAM as a function of SNR. The 

simulation shows that in both cases the performance of the Quadratic Decoder is essentially 
optimal (ML decoder). 



4-QAM:ML 

4-QAMN* 
16-QAMML 

16-QtMH1 

Figure 3.3: Performance comparison between the MAP/ML 0(N3) decoder and the quadratic 
decoder for 4-QAM and 16-QAM 

3.7 Fast Decoding of 3 x 3 Perfect STBC 

Oggier et al.[7] introduced the perfect space-time block codes which satisfy all of the following 
criteria: full-rate, full-diversity, non-vanishing determinant, good shaping and uniform average 
transmitted energy per antenna. These codes are constructed for 2 x 2, 3 x 3, 4 x 4 and 6x6 
MIMO systems. An example of a 2x2 perfect STBC is the Golden Code [22] described in 
Section 3.6. The conventional ML decoder for perfect STBCs with an TV-QAM or TV-HEX 
constellation is based on an implementation of sphere decoding. Although there is no report 
on the decoding complexity for other perfect codes, it is expected that when the channel matrix 
is close to singular, the preprocessing stage of the sphere decoding algorithm will yield a plane 
of possibilities rather than a single initial estimate. When this occurs, the lattice point search 
degenerates to an exhaustive search. 

In this Section we show that the approach described in Section 3.6 can be applied to obtain a 
fast decoding algorithm for 3 x 3 perfect STBCs which gives essentially ML performance with 
substantially reduced complexity. This approach can be also applied to other perfect STBCs to 
obtain low complexity decoding with essentially ML performance. 

3.7.1 Model and Decoding Problem 

Consider the codeword matrices of the perfect STBCs for 3x3 MIMO systems which we write 
in a form that will assist in the development of our algorithm. The perfect 3 x 3 STBC transmits 
nine complex (usually A'-HEX constellation) information symbols {a:.}?-1 over three lime 
slots from three transmit antennas. The transmit codewords of the 3 x 3 perfect STBC can be 
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expressed as 

I>- 
/X3i+i       .T3i + 2     T3i+3^ 

./•I'M, i 3     ^3ttl     X3i + 2 

L j-1'3. i 2   J!B3t+3   X3U 1 , 

(3.72) 

where the diagonal matrices B, are 

B, =(i+j)/3 + e 

B2 = (-i-2j)/3+je2 

s3 = (-1 - 2j)/3 + (i + i)e + (i + j)e2 

withe = diag(0i,02,03),0i = 2cos(217r/7).j = e2,r'/3 and /?, satisfy 

(3.73) 

(3.74) 

Assume that the channel state information is available at the receiver. Let k,} be the channel 
gain from transmit antenna i to a receive antenna j, then the received signal is given by 

where 

Y = HX + W 

//in   h2i  /i3i\ 

H h\2    hl2   h,32 

h\3   h23   h.33 

Equation (3.75) can be rewritten as 

r = (xi,x2,.r3)Wi + (x4,X5,x6)7<2 + (x7zxs.x9)7i3 + n 

(3.75) 

(3.76) 

(3.77) 

where r = (rj, r2, r3) contains the three received signal vectors, r, = (r,i, r,2, rl3) with the 
component r,j representing the received signal at antenna i in time slot j. The noise n is i.i.d 
Gausian noise with zero mean and covariance 2a213 and 

Wi = (Bi,Gi,Ci),7i2 = (H2,G2,C3),H3 = (H3,G3,C3), (3.78) 

where //,. (V, and Ci arc induced channel matrices from the three transmit antennas to the first, 
second and the third receive antenna respectively. Explicitly 

b,\h 11    6,2/121   6,3/131 

Hx = I jb%3h3i   biihu   bl2h2i 

Jbl2h2i  jbi3h3i   b,ihu 

(3.79) 

and similarly for (7, and (\. The induced channel matrices W1.W2.7i3 have the following 
property which is the basis of our fast decoding algorithm 

WiWl + W2«3 + Ti3n\ = 7||HfFl3 (3.80) 

That is 5Z,'\ 1 WiWj is a multiple of the identity. A similar property of the induced channel 
matrices holds for all of the perfect STBCs, including the Golden Code. In fact, our fast 
decoding method will apply to any STBC with structure giving rise to a relation of the form 
(3.80). 
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3.7.2 Low Complexity Decoding Algorithm 

Let c = (xi, z2, x3), a = (X4, is, x$), y = (27, x&, 19), we can rewrite (3.77) as 

r = cH\ + sH2 + yn3 + n. (3.81) 

The likelihood function associated with (3.81) is 

p(r\c,s,y,) oc exp f -— \\r - cHi - s7i2 - yH3\\2\ (3.82) 

Based on the conditional optimization described in Section 3.4, we first maximize (3.82) with 
respect to a and y given c. 

p(r|c, 8,y) TC exp (-^r2r  (l9 - H\(HiH[)-lHi) r'A 

x exp (-—(c- c(a,y))HiH\ (c - c(s,y))M 

(3.83) 

where r' = r - aTi.2 - y?i3. and 

c(a,y) = (r - sW2 - yHs)n\CHsH\rl. (3.84) 

We now make what is essentially a zero forcing approximation, since "Hi?tj is not generally 
a multiple of the identity. We take 

c(a.y) = Q(c(a,y)) = (Q(i,(a, y)). Q(*2(s, y)), Q(*3(*. y))). (3.85) 

Substituting (3.85) into (3.82) we thus estimate c, s and y as follows: 

(s,y) = argmin||r - c(s,y)Wi - sW2 - yWsW2 , 
•v*c (3.86) 

c = Q(c(s,y)) 

where c(s, y) is given in (3.84). 
If we first maximize (3.82) with respect to c and y given s we obtain the estimate 

(c,y) = argmin||r - cH\ - s(c,y) - yH3\\2, 
C"€C (3.87) 

a = Q(s(c,y)) 

where 
a(c.y) = (r - cHi - yWaJW^Wj)-1. (3.88) 

Alternatively, if we maximize (3.82) with respect to c and s given y we obtain 

(c,s) = argmin||r     cHi - sW2 - y{c. a)H3\\   , 
c.8€f (3.89) 

where 
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y = Q(y(c, a)) 

y(c,a) = {r -cUi- SH^HICHSHI)-
1
 . (3.90) 



n*i(r1,re.T3) 

Figure 5.4: Empirical distribution of minimi, 72, 73) 

Equations (3.86), (3.87) and (3.89) each provide an algorithm for obtaining the estimate of 
x,,i = 1...., 9. each of which involves at most /V6 evaluations of the right hand side of 
one of (3.86), (3.87) and (3.89). Now, we have three possible decoding solutions. Of course 
if 'H\'H\.'HiH\ and W3W3 were multiples of the identity matrix, all of the optimizations 
(3.86), (3.87) and (3.89) would have exact ML solutions and we would not need to make a 
choice. However, as we are making a zero forcing approximation, we need to choose the best 
alternative for each channel. One approach is to compute all three alternatives and take the 
alternative which maximizes the likelihood. The key to the current algorithm is that due to the 
structure of the code one of the three estimates is good, i.e. essentially ML, with very high 
probability. The accuracy of the quantization depends on both the determinant (which deter- 
mines signal to noise ratio) and condition number (which determines the accuracy of the zero 
forcing approximation) of 'H\'H.\.'Hi'H\ orT^-^. Fig.3.4 shows the empirical distribution 
of min(7i, 72, 73) for i.i.d Gaussian channel coefficients, where 71,72,73 represent the con- 
dition numbers. This shows that although the condition numbers can individually be large, the 
minimum of the three has a very high probability of being small. 

We can reduce the computation by a factor of three by deciding on one of the three estimates 
based on the channel. A possible criterion is to choose to quantize the variables corresponding 
to the Hj with the largest value of det(7-f jTij). Another choice is to quantize the variable 

for which the corresponding matrix 'Wj'WJ has the smallest condition number. For the Golden 
Code these two criteria are equivalent, but here they are not. We have found experimentally that 
the former criterion is just slightly better and obviates the need to compute all three estimates. 
The algorithm can be summarized as follows: 
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Figure 3.5: Performance of the 0(N6) decoder and the ML (D(NS) decoder 

Letdet(-H) = max[det(«iWi),det(W2'H^),dct(W:,7i^)]. 

lfdetOWiW{) =det(«) 

sHi 

Q(c(s,y)) 

(8,y) - argmin||r - c(s,y)Hi 
»,1/€C 

l/Wa 

elseifdet(«2'Mj) = det(W) 

y) = arg min | 
c-v€C 

s = Q(s(c,y)) 

(c,y) = aigmin||r - cH\ - s(c.y)Ti.2 - yH3\ 
c-v£C 

otherwise 

(c, s) = argmin||r - cW, - s7i2 - y(c S)H-A\\
2 

c.nec 

y = Q(y(c,s)) 

where c. a, y are given in (3.84), (3.88), (3.90) respectively. 

The perfect STBCs are constructed in terms of information symbols, either a QAM or HEX 
constellation. This means that the computational complexity of the quantization step is O(l). 
Therefore our algorithm involves at most N6 evaluations of the likelihood function. We com- 
pare the performance of the fast decoding algorithm described above with the ML decoder for 
a 3 x 3 perfect STBC. Figure 3.5 shows the symbol error rate as a function of SNR using 
a 4-HEX constellation for a Rayleigh fading channel model. The result shows that our fast 
decoder is essentially a ML decoder with complexity C(N ). 
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Chapter 4: Fast Decodable Space-Time Block Codes: 
General Theory 

In this chapter we consider how to write linear dispersion codes and in particular, the perfect 
STBCs, in a way that makes the decoding structure clear. It will become clear that the per- 
fect STBCs can be considered as multiplexed quasi-orthogonal designs.  Application of the 
conditional optimization approach developed in Chapter 3 lead to fast exact ML decoders. 

Consider a MIMO communication system with n, transmit antennas and M, receive anten- 
nas. The transmitted signal matrix X £ Cn' 
are related by 

Y = HX + W 

and the received signal matrix Y € C" 

(4.1) 

where H e C"' *"' denotes the channel matrix with entry htJ representing the fading coef- 
ficient associated with the transmit antenna i and receive antenna j. The channel coefficients 
are i.i.d. circularly symmetric complex Gaussian random variables with zero mean and unit 
variance. W e C"' *r denotes the complex additive white Gaussian noise with i.i.d. en- 
tries W,j ~ CW(0, 2a2). We assume quasi-static flat Rayleigh fading where the channel 
coefficients are fixed for the codeword duration i.e. for 7' symbol periods. 

4.1 Linear Dispersion Codes 

Let {xk}l*i be a set °frea' scalar symbols which are selected in pairs from some constella- 
tion. A linear dispersion (LD) code [34] is a space-time code in which codeword matrices are 
obtained as linear combinations of certain basis matrices according to 

IK 

y^/xkAk, 
k   i 

(4.2) 

where {.4*}l=i £ C"' *T is a set of complex matrices. If the x* roam over all of R this is the 
real linear span of the matrices Ak and as such is a real vector subspace of C xT That is. a 
subspace of C"'      which is a vector space over R. We denote this space by V. 

Note that LD codes encompass all possible linear space-time codes. Substituting (4.2) into 
(4.1), the received signal vector y can be written as 

y = xH + n (4.3) 

where i 6 R"' is the transmitted information symbol vector, and Ti. is the induced channel 
matrix 

/ hiAi     h2Ai    ...   hn,Ai \ 

n = 

where h, = (hu, h2„ • • •, hn,,). 

(4.4) 

yhiA2K  h2A2K  ••• hn,A2KJ 
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4.2 Algebraic Properties 

In this section we look at some algebraic properties of an LD codes which leads to a fast ML 
decodable property. We begin by recalling the definition of an orthogonal design. 

Definition 2 If an LD code (4.2) is an orthogonal design then for all k,l = 1,..., IK, 

AkA) + AiA\ = akSk,iI,    ak > 0. (4.5) 

There are many codes which are not themselves an orthogonal design but do have subcodes 
which are orthogonal designs. Following (9] we refer to these codes as having embedded 
orthogonality. More precisely: 

Definition 3 An LD code (4.2) is said to have embedded orthogonality of order m if some 
subset of size m of the matrices Ak satisfies (4.5). For such a code we can relabel the Ak, and 
write (4.2) as 

2m 21< 

k - I k = 2m + 1 

where {Ak}l'"i satisfies the condition (4.5). 

Definition 4 An LD code (4.2) is a (2h\ d)-Quasi-Orthogonal Design ((2K, d)-QOD) if there 
is a partition of the set of integers {1,..., 2A'} into 2K/d sets Si,..., S2K/d^ each of size d, 
such that 

1. For each j 6 S( and m, 6 S(i, with I ^ £', 

AjAin + AmA] = 0, (4.7) 

2. For all f = 1 2K/d 

JT AjA\ = atlM. (4.8) 
jes, 

Note that a (2/\\ l)-QOD is an orthogonal design. 

Definition 5 An LD code is said to have embedded (2m, rfj-quasi-orlhogonality if some subset 
of the matrices Ak of size 2m satisfies the conditions (4.7) and (4.8). For such a code we can 
relabel the Ak land xk), and write (4.2) as 

2m/d (d 2K 

x = Ys   Yl   xkAk + J2 xkAk> (49) 

where {Ak}l•i satisfies the (2m,d)-QOD conditions with partition St = {{t - \)d + 
1 Id), fort = 1 2m/d. 
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4.3 Fast Maximum Likelihood Decoding 

Consider the received signal given in (4.3). The likelihood function of symbols x given the 
received signal y is given by 

p(y|x)«exp{-^||tf-a;'H||2}. (4.10) 

The maximum likelihood estimate of x is: 

x = argmaxp(y|x). (4.11) 
X 

If an LD code X in (4.2) is an orthogonal design then the ML decoding problem for.x/t, k = 
1,..., 2K decouples into 2A' real parallel sub-channels. 

Theorem 4 If a linear dispersion code of the form (4.3) has embedded orthogonality of order 
m then exact ML decoding can be implemented with complexity 0(N n) for square N- 
QAMand with complexity 0(N   ~mi])fora general constellation. 

Remark 5 It follows that in all cases the complexity of ML decoding is at most 0(NK~l) for 
square N -QAM. 

Proof:   Suppose our code X has the form (4.6). Write Xi = (xi, • • • , X2m) and X2 = 
(x2m+i, • • • ,X2K). and decompose (4.3) as 

y = xiTii + X2U2 + n. (4.12) 

The likelihood function associated with (4.12) is 

p(y|xi,x2)ocexp j-^ \\y - XiHi - X2W2II2 

2a 

We have isolated Xi, as our approach is to maximize the likelihood function (4.13) with respect 
to xi given X2, and then maximize the resulting partially optimized likelihood function with 
respect to xi- 

Since the matrices {^4*, k = 1,.. ., 2m} satisfy the condition (4.5), 

HiH\+HiH\=D, (4.14) 

where D = diag(ai, • • • ,Q2m), the likelihood function (4.13) can be written as 

I 
p(y|xi.X2) ot exp j - ^j(y - x2'ri2){y - x2H2)i 

1       2m 2m 2m ^   2m ^ (4.15) 

>=1 J=l 

where 

Xi(x3) = (yH\ + yU\ - x2{H2n\ + "Ha^I)) D"1. (4.16) 
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Thus, given x2, the ML decoding problem for X\ decouples into in parallel sub-decoding 
problems. We have 

Xi(a;2) = (Q(xi(x2 )),••• ,Q(xm(x2))) 

= Q(ii(xa)), 
(4.17) 

where Q denotes the ML decoder for the sub-decoding problems. For square TV-QAM the ML 
decoder Q is just quantization which has complexity 0{\). For a general constellation Q will 
involve a search with linear complexity in the size of the constellation. Substituting (4.17) into 
(4.15) we obtain the optimization problem for x2: 

x2 = argmin \\y - x\(x2)Hi - x2"H2||   , 

which can be substituted back into (4.17) to obtain the ML estimate of Xj 

xi = ii(x2). 

(4.18) 

(4.19) 

Thus, (4.18) and (4.19) provide an algorithm for obtaining the ML estimate of xt, i — 1 2A", 
which involves at most Nk~m evaluations of the right hand size of (4.18) for square N- 
QAM. For a general constellation we need to evaluate (4.18) Nh ~m times and each evalu- 
ation involves 2m parallel searches through TV alternatives to give an overall complexity of 
0(NK-m+1). U 

Theorem 5 If an LD code (4.2) has embedded (2m,d)-quasi-orthogonality. then exact ML 
decoding can he implemented with complexity 0(Nh ~"1'(rf" 1,/2) for transmitted symbols 
taken from a square N-QAM constellation while for a general constellation the complexity is 
0{NK'm+d). 

Proof: Write xf = (x(/_j)d+i, • • • ,xu),l = 1, ••• . 2mandx2mti = (x2m+i,- • ,X2K) 

Then we can rewrite (4.3) as 

2m/d 

The likelihood function associated with (4.20) is 

+ n. (4.20) 

p(y\{xt},x2m + \) oc exp • 
2a'1 

2m/d 

y - j>    xiHi - x2m+i'H2m+i 
(=1 

(4.21) 

Now since the matrices {Ak, k = 1. • • • . 2m} satisfy the condition (4.7) then, for ( ^ £', 

%   0/ 
fti tt(l   T   rtf rtf,, 

0rf   Mrf 
(4.22) 
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where Mj is a d x d matrix and 0,j denotes ad x d matrix with all elements are zero, and so 
the likelihood function (4.21) can be written as 

p(y\{xe},xi 0 
<p| - 2~3^ ~ x'2"" 1^2• u)(y - i2m) iWam+i) 

2m/d 

e = \ 
2jn/d   

x  Yl •\>{(-^{xe - it(x2m+i)){niH\ +HiH)){xt - x^xi,,,^)?}. 

(4.23) 

where, for t = 1. •• • . 2m/d, 

Xe(X2m+l) 

= (yH\ + yHl - X2m + i(H2m+iHl + Wa,„ , ,«•)) (w,W* + W,Tij)"' 

Thus, given 127,1 + 1. the ML decoding problem for {.r<|(' =  1, 
2m/d independent sub-decoding problems. We have 

(4.24) 

, 2m/d] decouples into 

X/(iC2m+i) = argmin (i»-i((i2ml 1)) VHtTi.] + H(7i\) (xt -xe (x2m + 1))
T. (4.25) 

For a square JV-QAM constellation the complexity of the above 2m/d minimization is 0(Nl,d~1)/2) 

using conditional optimization, while for a general constellation the complexity is OiN"1). 
Substituting (4.17) into (4.15) we obtain the optimization problem for {Can, , 1: 

X2m+i = argmin 

2m/d 

1/ -    2_,   Xt(X2m+\)'Hl ~ X2mtl'W2m+l 
e^i 

which can be substituted back into (4.25) to obtain the ML estimate of xt 

xe = x«(x2m+i),    t =!,-•• ,2m/d. 

(4.26) 

(4.27) 

Thus, (4.25)and (4.26) providean algorithm forobtaining the ML estimate of x,. i = 1, ••• ,2A', 
r/v which involves at most N     '" evaluations of the right hand size of (4.26) for square Ar- 

QAM. with each evaluation having complexity 0(N (d-l)/2 

ofO(JV /\'-rn+(d-l)/2\ 
). giving an overall complexity 

For a general constellation we need to evaluate (4.26) TV times 
with each evaluation involving 2m/d parallel searches through Nd alternatives giving an over- 
all complexity of C(iVA'"m+d). • 

Of course, we can apply this general theorem to reproduce the conclusions of Chapter 3 for 
multiplexed orthogonal [55] and quasi-orthogonal designs [56]. However, somewhat surpris- 
ingly, this theorem also applies to the perfect space-time block codes of Oggier et al. [7| which 
we will show below have the structure of multiplexed quasi-orthogonal designs. 
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4.4 Examples 

4.4.1 The Golden Code 

Recall that the Golden Code codewords take ihe form 

I a 0 •Tl     X3\ (T   0 

ix3 x\)       \0 (i 

X2    X4 

ixn  xi ^5 \»  Q 

where a = (1 + ifi) and a = (1 + IT). This can be written in terms of a real LD code as 

(4.28) 

x = y~\skAk (4.29) 

with .si   =  X\R,S2  = Xir,S3   =  X2R,S4   =  X2I,S5  =  X3R,S6   =  X31, 87   =  X4R, Sa   = X41, 
where subscripts nR and nl represent real and imaginary parts of symbol xn, and 

A, = 
a  0 

0 a 
,A2 = 

0 a> 

ia 0 

0 ia 

0   ia 

-a 0 

OcT   0 

0 afi 

0   ar 

tali 0 

iar   0 

0   ift/x 

0    iar 

a/i   0 

(4.30) 

We can interpret the Golden Code as a multiplexed pair of (4.2)-QOD leading to a fast ML 
decoder. To see this consider the matrices 

7 
r  0 

0 fi 
and    Z = 

0 1 

i 0 

and note that Z8 = I2. From T we can construct a pair of diagonal matrices 

B2 = -il2 + T, 

which satisfy 
lV(BJB,t

n) = 5^ 

(4.31) 

(4.32) 

(4.33) 

Note that A\ = BuA2 = BiZ2 = iBuA3 = B2, A4 = B2Z
2 = iB2,Ak+4 = AkZ,k = 

1 4. It can be verified that the subsets {Ak}i=i and {Ak}l =5 satisfy the (4. 2)-QOD con- 
ditions (4.7) and (4.8) with partition {1,3}, {2, 4} and {5, 7}, {6, 8} respectively. Therefore 
the Golden Code is the multiplexing of a pair of (4,2)-QOD with multiplexing matrix Z. 

where 

X = X.l(x\R,X2R,XU,X2l) + X2(X3R.X4R,X3l,X4l)Z 

-i 

X,(u.i, 02,03,04) = y]akAk. 

(4.34) 

(4.35) 
k   1 
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The received signal can be written as 

r = Xitii + X2H2 + n, 

wherexi = (XIR, x2R.xn.x21), X2 = (x3R,X4R.X3i.xn) and also 

(a b 0 0\ 

(4.36) 

HiH\ +H>H\ 
b c 0 0 

0 0 a b 

0 0 b  c 

= H2HI + HzHl (4.37) 

where a. b. r are some constants. Theorem 5 implies that the Golden Code has ML decoding 
complexity 0(N2y/N) (see [57, 52]) tor square N-QAM constellations using the decoding 
algorithm of the last Section. 

4.4.2 3 x 3 Perfect STBC 

The perfect 3 x 3 STBC transmits nine complex (usually N-HEX constellation) information 
symbols over three time slots from three antennas. The codeword of the 3 x 3 perfect STBC 
can be expressed as 

/   I3t+1       a:32 + 2   Z3H-3\ 

£*•+' (4.38) 

(4.39) 

(440) 

JX3i+3      13,+ 1    .1:31 + 2 

iJ33»+2   jXSt+3   X3, + ll 

where the diagonal matrices B, are 

B\ =(i+j)/3 + e 

B2 = (-l -2j)h + jO2 

B3 = (-1- 2j)I3 + (l+j)6 + (l + j)Q2 

with 0 = diag(0i,02,03),0, = 2cos(2ln/7),j = e2"'73 and B, satisfy 

TT(BJBI) = 76jm. 

Similarly, let 

Xl = (XlR,XiR.X7R.XU.X4I.X7l), 

X2 = (X2R,X5R,X8R.X21.X5l,X&l), 

X3  = (X3R,X6R.X9R.X3l,X6l,Xgi). 

then the 3x3 perfect STBC (4.38) can be written as three (6.3)-QOD multiplexed as follows 

X = X1(x,)+-X2(i2)Z + X3(x3)22 (4.41) 

where 
6 

Xj(si,S2, S3, AM. s5, s6) = 2J SkAk, (4.42) 
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(0 i °\ 
1) 0 1 

V II °) 
and 

.4, = Bi,A2 + B2,A3 = B3,A4 = iBuA5 = iB2, A6 = iB3. 

In this case the received signal is given by 

r = XiHi + x2H2 + X3H3 + n 

and 

HiH\ + HiH\ = n2n2 + H2H\ = n3nl + n3n3 

'M3   03 

0;,     M3 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

Theorem 5 implies that the 3 x 3 perfect STBC has ML decoding complexity 0(N7) for square 
QAM constellations. 

4.4.3 1 x 1 Perfect STBC 

The 4 x 4 perfect STBC transmits 16 complex (N-QAM constellation) information symbols 

over four times slots from four antennas. The codewords can be expressed as 

5> 
/   X4m l4i+2 X4i+3 X4i + 4\ 

lX4i+4 X4t+l X4i(2 X4i+3 

iX4i + 3 lX4i + 4 X4t+1 X4i + 2 

1 lX4i + 2 lX4i + 3 tX4i+4 X4, + l 

(4.47) 

where 

IU (1 -3i)/4 +z02 

B2 = (i -3z)e +?;e3 

fl3 = -ih + (-3 + 4i)9 + (1 - i)63 

R, = (-i+t)/« -3e + e2 + e3 

with e = diag(0!, 02,03.04).^ = 2cos(2'7r/15), and 

TriBjBl) = l5Sjm. (4.48) 

Write 

X\  = (xiR,X5H,XgR,Xl3R,Xir,X5I,X9l,Xl3l), 

X2 = (X2fl,X6R,XloH,Xl4«,X2/,X6/,Xl0/,Xl4/), 

X3 =  (X3R,X7R,XnR,Xl5R,X3l,X7I,Xui,X\5l), 

Xi = (X4H,X8/j.Xl2«,Xi6fi.X4;,X8/,Xl2/,X16/). 
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The 4 x 4 perfect STBC (4.47) can be written as four (8, 1)-Q()D multiplexed as follows 

X = Xx(xi) + X2(x2)Z + X3(x3)2
2 + X4(x*)Z3, (4.49) 

where 
8 

X1(S1,S2,S3,S4,S5,S6,S7,S8) = ^S/tv4/t. (4.50) 

z = 
(° 1 II l)\ 

1) 0 i I) 

(1 ii 0 1 

V i) 1) V 

(4.51) 

and 

Ai = Bi,A2 = B2,A3 = B3,A4 = B4,A5 = iBi.A6 = iB2,A7 = iB3,A% = iB4. 

The received signal is 

r = X\H\ + x2W2 + x3H3 + x4H4 + n (4.52) 

and 

/TI/TJ + rt\rtl  — n.2112 + n.2 rt2 
—   "3113 + rtiiL^ —  /T4/I4 + n.4rli 

M4   04 \ (4.53) 

04   M.,J ' 

Theorem 5 implies that the 4 x 4 perfect STBC has ML decoding complexity 0(Nx3\/~N) for 
square QAM. 
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Chapter 5: Space-Polarization-Time System 

The performance of MIMO systems is highly dependent on the availability of a rich scattering 
environment (e.g. densely urban and indoor) as well as sufficient antenna spacing to achieve 
multiplexing or diversity gain. In rural and remote environments the wide open space and 
flat or smooth undulating terrain give rise to LOS conditions dominating between the trans- 
mitter and the receiver and consequently to a loss of diversity. In order to achieve significant 
multiplexing or diversity gain, many wavelengths spacing between antenna elements at the 
base station, and up to a wavelength at a mobile unit are required [58]. As the polarization 
of transmitted signals is mostly preserved by the LOS environment, the use of dual-polarized 
antennas (polarization diversity) is a promising cost and space effective alternative, where two 
spatially separated uni-polarized antennas are replaced by a single antenna structure employing 
orthogonal polarization. In this chapter we investigate the performance of various transmission 
schemes for coding onto a dual polarimetric antenna. 

We begin with a brief overview of electromagnetic polarization and polarimetic transmission 
systems by following [59]. 

5.1 Polarization 

Polarization is a property of the electromagnetic plane wave solutions of Maxwell's equations. 
In an infinite medium in which there are no sources. Maxwell's equations have so-called plane 
wave solutions of the form 

E(x,t) = eei(h"-ut\ (5.1) 

B(x,t) = Be'ikx-u"\ (5.2) 

where t denotes time, x € R3 denotes a point in space and £ and B £ C3. The (angular) 
frequency of the plain wave is UJ and fc is called the wave vector of the plane wave. In order to 
be solutions of Maxwell's equations the following relations must hold 

kk = fit — . (5.3) 
c* 

k   £ = 0, (5.4) 

k   B = 0. (5.5) 

B = ,/TJefc x £. (5.6) 

Equations (5.1) and (5.2) are a complex solution to Maxwell's equations. Physical solutions are 
given by both the real and imaginary components of this solution. The unit vector fc determines 
the direction of propagation of the plane wave. Equations (5.4) and (5.5) imply that the E and 
B are in the plane perpendicular to the direction of propagation fc. Furthermore, equation (5.6) 
implies that E and R are perpendicular to each other. 

The concept of polarization of a plane wave is related to the nature of the vector £. Suppose 
that ei and e-2 £ R3 are orthogonal real unit vectors which are both orthogonal to fc. the 
direction of propagation. Since £ is orthogonal to fc, it is a complex linear combination ofej 
and 62 

£ = Bid + £2e2, (5.7) 
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where £1 and E2 are complex numbers. If Ihe complex phases of E\ and E2 are equal, so that 
Ex = lEile^ and E2 = \E2\e

1*', then the real electric field is 

E(x,r) = Vl^il2 + |£2|
2ecos(fc-x - wr + <£), (5.8) 

where e is the unit vector 

e = (|£i|ei + |£2|e2)/(\/|£i|2 + |£2|2). (5.9) 

We see that in this case the electric field oscillates between ±\J\E\\2 + \E2\2 e always re- 
maining parallel to e. In this case the plane wave is said to be linearly polarized in direction 
e. In situations where the plane wave propagates parallel to the surface to the Earth, waves lin- 
early polarized in a direction perpendicular to the Earth's surface are called vertically polarized 
and those linearly polarized in a direction parallel to the Earth's surface are called horizontally 
polarized. 

Another important type of polarization occurs when \Ei\ = I.E2I and the phase of E\ is 
different from that of E2 by ±n/2 , so that £2 = ±i£j. The real electric field then has the 
form 

E(x, t) = \Ei\ (ei cos(fc • x - wi + 4>) T e2 sin(fe • x - u>t + 4>)). (5.10) 

Notice that here E just rotates around a circle of radius |Ei | with angular frequency UJ radi- 
ans/sec. Such waves are called circularly polarized. The two possibilities =F in Equation (5.10) 
correspond to the E rotating in opposite directions around the circle. These two possibili- 
ties are referred to as being left-handed and right-handed circularly polarized depending on 
the convention chosen. Finally, we note that a plane wave which is not linearly or circularly 
polarized is said to be elliptically polarized. 

5.2 Polarimetric Transmission Systems 

The vector potential for a sinusoidally oscillating source (antenna), that is, a source consisting 
of localized charges and current with charge and current densities of the form 

p(x,t) =p(x)e,u" (5.11) 

J(x,t) = J(x)eiut (5.12) 

which is small compared to the wavelength is 

i(kr-u,t) 
A(x.t) = -ikp •  (5.13) 

where for free space k = UJ/C and r is the distance between the transmitter and the receiver. 
Here p is a possibly complex valued electric dipole moment of the source 

p=      x'p(x')dx'. (5.14) 
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The corresponding electric and magnetic fields are 

>(*rr-u;( 

B = V x A 

,' t(kr-u,t) 

E = -V x B = 

k2{nxp)-     1 - — (5.15) 
7- \        ikr) 

(fca(n x p) x n + (3n(n • p) - p) ( — - — J j .   (5.16) 
k r 

where a; = in. In the far field or radiation zone (kr » 1) this reduces to the limiting form 

Mkr-uit) 
B = k2(nxp)-  (5.17) 

r 
.(*r-^() 

E = k2((nxp)xn)~        -. (5.18) 

The electric field can be rewritten as 

E = k2(p - (pn)n)—       —. (5.19) 

Notice that p - (pn)n is the projection of the dipole moment p onto the plane perpendicular 
to n. At a point x = in in space the electric and magnetic fields look locally like an outgoing 
plane wave with polarization vector £ = p - (p • n)n. 

For antennas which are small compared to a wavelength, which is often the case in mobile 
wireless communication systems, we can imagine having three feeds into the antenna config- 
ured in such a way that we have complete control over the dipole moment p of the antenna. For 
a larger antennas, or for concreteness in the case of small antennas, we consider so-called triad 
antennas. A triad antenna is composed of three orthogonal dipoles oriented along euclidean 
directions as shown in Figure 5.1. At the transmitter a triad antenna can generate an arbitrary 
oscillating dipole moment and consequently an arbitrary polarized electric field at the receiver, 
subject only to the constraints imposed by the physics of the electromagnetic field. A triad 
antenna at the receiver allows the receiver to measure the electric field as shown in Figure 5.2. 

The use of triad antennas allows us to think of this MIMO system in an unusual way. Instead 
of thinking of the individual component antennas and the symbols coded onto them at the 
transmitter and read off at the receiver, we can think directly of coding onto a physical dipole 
moment vector at the transmitter and measuring the resulting electric field at the receiver. 
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Figure 5.1: Schematic of a triad antenna 

Figure 5.2: A triad antenna system. Electric field (E) at the receiver is perpendicular to the 
direction of propagation 

A special case of the triad antenna is the more usual dual polarimetric antenna. A dual- 
polarized antenna consists of two co-located polarized antennas, typically horizontal/vertical 
(0°/90°) or slanted (+45°/ - 45°) as shown in Figure 5.3. The signals, say xj and x2, 
are transmitted on the two different polarizations, and n and r2 are the signals received on 
the corresponding polarization. Note that, although there is one physical transmit and one 
physical receive antenna, the underlying channel is a two-input two-output channel since each 
polarization mode is treated as a separate physical channel. 

-45 

Figure 5.3: Schematic of a dual-polarized antenna 

5.3 Space-Polarization-Time System: Alamouti Signaling 

Nabar et al. [58] have studied the performance of a system with one dual-polarized transmit 
and one dual-polarized received antenna with Alamouti signaling and spatial multiplexing. 
Deng et al. [60] have extended these results to the case of two dual-polarized transmit and 
one dual-polarized received antenna with Alamouti signaling and proposed a particular hybrid 
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transmission scheme. In this section we further analyze Deng et al's system and investigate 
the performance of two Alamouti multiplexing in the presence of polarization diversity and 
compare with the performance achieved using a uni-polarized scheme and the hybrid scheme of 
Deng et al. We analyze and predict the performance of the systems with different transmission 
schemes by applying the parameter A developed in Chapter 2. The parameter A measures the 
"quaternionic angle" between the two Alamouti channels. 

5.4 MIMO Channel Model 

Consider a MIMO wireless communication system with iu transmit and n, receive antennas. 
The channel is assumed to have quasi-static fading represented by a ?i, x nt matrix H with 
entries which are complex Gaussian random variables. The channel matrix can be decomposed 
into the sum of an average (LOS) component and a variable (scattered) component as 

where £"{H} = Jy-^H is the channel mean. The factor J jjj; and J JJ-J^ are energy 
normalization factors and are related to the Ricean A'-factor, with A' being referred to as 
the A-factor. Note that A' = 0 corresponds to the case of a pure Rayleigh fading channel 
and A' = oo corresponds to the case of a pure LOS channel. K = 10 is used to represent 
the typical suburban environment of a personal communication system (PCS), with not very 
high building density and partial LOS [60]. The elements of the matrix H are zero-mean 
circularly symmetric complex Gaussian random variables and unit variance. Rt = R) 2 R.) 
and RT = Rr Rr are transmit and receive correlation matrices. The LOS component H 
is modelled as 

H = l3ara] (5.21) 

where a, and a, are transmit and receive steering vectors and 0 is a complex gain.  If the 
transmit and receive antennas are uniform linear arrays with spacing d then 

/i       -nrdcos9i ~ur[nt — 1 )<i cos 0t \l at = (i,e ,... ,e ) 
/*       -iirdcosO, — t7r(n, - 1 )d cos 0, \T a, = (l,e ,... ,e ) 

(5.22) 

are the transmit and receive steering vectors respectively. We take H to be normalized such 
that 

TrfH'H) = ntnr, (5.23) 

so that \0\ = 1. 

5.5 Dual-Polarized Channel Model 

Consider a system with one dual-polarized transmit and one dual-polarized receive antenna. 
The 2x2 channel matrix 

/few    /lh»\ 
H = . (5.24) 
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is a polarization matrix where hw and /?hh represent path gain from vertical transmit to vertical 
receive antenna and from the horizontal transmit to the horizontal receive antenna, respectively. 
Similarly, /ihv and /ivh represent path gain from the^horizontal transmit to the vertical receive 
antenna and vice versa. The elements of the matrix H, which are denoted as h.tJ(i,j = v. h)are 
zero-mean circularly symmetric complex Gaussian random variables whose variances depend 
on the propagation conditions and the antenna characteristics. We use the model given in [58], 
that is 

E{\km\2} = E{\hhh\2} = 1 

£{|£vh|
2} = E{\h^\2} = 7, 

where 0 < 7 < 1 describes the cross polarization discrimination (XPD) or separation of 
orthogonal polarization for the variable component of the channel. 7 is a composite of the 
properties of the antennas and the scattering environment (coupling between elements due to 
scattering). Good discrimination of orthogonal polarization corresponds to a small value of 7 
and vice versa. The elements of the matrix H, which are denoted as ht], (i,j = vh), are fixed 
complex numbers satisfying 

|^w|2 = M2 = 1, l^vhl2 = l/ihvl2 = 7/, (5.26) 

where 0 < 7/ < 1 is related to the XPD for the LOS component. For pure LOS conditions, 
~if is solely a function of the antennas' ability to separate the orthogonal polarization. 

It was stated in [58] that the experimental data collected in [61] and [62] shows that the 
elements of H are, in general, correlated. The correlation coefficients are therefore defined as 

t = E{hmhto} = E{/tVhfej;h} r _ E{hnh^} _ E{hhvh^} « 2?) 

where t is referred to as the transmit correlation coefficient, and r is the receive correlation 
coefficient. The experimental data [58] also reveals that the correlation between the diagonal 
element matrix /)„„ and /ihh and the off-diagonal elements /?vh and ht,y is typically very small. 
Therefore, for simplicity, we assume that 

E{ftwfthh} = E{hhJ,:H} = 0. (5.28) 

Consider a two user system with two dual-polarized transmit and one dual-polarized receive 
antenna, where each user employs the Alamouli STBC over a dual-polarized transmit antenna. 
The equivalent polarization matrices from the first user to the first and second receive antenna, 
can be represented as 

(few   /lhv\ /    hvb   h 

-Aiic}'    ^   H3=U^'- (529) 

Similarly, the equivalent channel matrices for the second user to the first and second receive 
antenna are 

ffw  <?hv\ /   <?vh  9hh\ 
,      .     .    and    52= ,      . ) . (5.30) 
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We consider three different transmission schemes. The first is a uni-polarized system as 
described in Section 2, i.e. four vertically polarized transmit and two vertically polarized 
receive antennas, all spatially separated as shown in Figure 5.4. 

Figure 5.4: Scheme FUni-polarized 

The LOS components of the equivalent channel matrices are modelled as 

Hi 
1    Mi 

-fl\    1 ,H2 

M2    (13 \     _ 

A«3    /'2 

HA  fi5\   _ 

"Ms   IU 

P-6  in 

M7  Me 
(5.31) 

where p.\,p-2 P-i are arbitrarily chosen unimodular complex numbers that represent the 
different LOS paths. Note that in this case 7=1. 

The second scheme consists of two dual-polarized transmit and one dual-polarized receive 
antenna and employs Alamouti STBC on each pair of dual-polarized transmit antennas as 
shown in Figure 5.5. 

Figure 5.5: Scheme 2:Dual-polarized 

This scheme will be referred to as the dual-polarized system and the equivalent LOS com- 
ponent channels are modelled as 

H,= w,W2=(-7,Wfi 
-y/lff1"     M*     j       2     \ "M*  y/W 

(5.32) 

63 



where n is again a unimodular complex number. Under the assumption that the receiver is 
in the far field of the transmit antenna, then /x = exp(-2pn • A), where A is the carrier 
wavelength, n is the unit vector in the direction of the receiver and A is the position of the 
second antenna relative to the first antenna. Furthermore, since the two orthogonal components 
of each of the dual polarized antennas are co-located, their relative path difference is zero. 

The third scheme is that proposed by Deng et al. [60]. It also consists of two dual-polarized 
transmit antennas and one dual-polarized receive antenna, but employs Alamouti STBC on the 
same polarization across the two transmit antennas as shown in figure 5.6. 

T Vertical of 1" Tx 

_T Vertical of 2•1 Tx 
1— i 

i Horizontal of I" Tx 

i Horizontal of T'1 Tx 

Figure 5.6: Scheme 3:Dual-polarized hybrid 

In this case the equivalent LOS channel matrices are modelled as follows 

Hi = (5.33) 

where fi is as defined above. 

5.6 Analysis and Simulation 

We now analyse the three transmission schemes described above by applying the parameter A 
obtained in Chapter 2. We consider both the Rayleigh fading channel and the Ricean channel 
where K = 10. In the simulation results reported here, the data symbols were taken from 
an 8-PSK constellation and decoded with the algorithm given in (2.42) and (2.49). For the 
polarization schemes we set the XPD parameters to 7 = 0.4 and 7/ = 0.3 and for correlated 
channels, the transmit and receive correlation coefficients, as defined in (5.27). were chosen to 
be f = 0.5 and r = 0.3. 

Figure 5.7 illustrates how the angles between the channel matrices |A|2 are distributed for 
an uncorrelated Rayleigh fading channel, for the three different transmission schemes. Fig- 
ure 5.8 shows the symbol error rate obtained under the same channel conditions. Figure 5.9 
and Figure 5.10 show the corresponding results for the case of an uncorrelated Ricean channel 
when K = 10. It is clear that the presence of the LOS component causes the means of the | A|2 

distributions to shift and the distributions to become more concentrated around the mean. The 
effect is quite pronounced even for relatively small values of K. This behavior holds generally 
and leads to the conclusion that, when present, the angle between LOS paths is the dominant 
factor in the performance of various schemes. 

64 



Figure 5.11 shows the |Aj2 distributions for three different LOS paths for correlated chan- 
nels. Figure 5.12 shows the corresponding results with the XPD parameter set to 7/ = 0.1 
rather than 0.3. Note that each row represents a different LOS path and each column rep- 
resents different transmission schemes. It is evident that the |A|~ distributions for the uni- 
polarized and dual-polarized schemes have considerable variability as the relative phases in 
the LOS components vary. However, what stands out is the stability of the |A|2 distribution for 
the dual-polarized hybrid transmission scheme. The distribution, and hence the performance 
of this scheme, is insensitive to the relative phases of the LOS components of the channel. 

We can understand this behavior by considering the angles between the LOS components of 
the channels which we denote by Ai.os- From (2.33) and (5.20), we have 

(5.34) 
\n\\\Q\ 

For the dual-polarized hybrid system 

|A,oS| = ^-. (5.35) 
1 + 7/ 

and for the dual-polarized system we have 

|A,.0S| = t/cos2 4> + ., 47/ ,, sin2 <j>, (5.36) 
(1 +7/T 

where <t> = A\i. 

We immediately note from (5.35), that |A| os| for the dual-polarized hybrid scheme depends 
only on 7/. This explains why the dual-polarized hybrid scheme is robust to changes in the 
relative path lengths between the two dual polarized transmitters, as observed in Figures 5.11 
and 5.12. 

We note that for the dual-polarized scheme 

^^ < IALOSI < L (5.37) 
1+7/ 

We have demonstrated that the performance parameter A obtained in Chapter 2 can be used to 
analyze and predict the performance of different transmission schemes involving polarization 
diversity and the Alamouti codes. The results show that the performance is dominated by the 
"angle" between the component Alamouti channels. In designing transmission schemes that 
involve multiplexing Alamouti coded transmissions, one should aim for multiplexing schemes 
which keep the channel volume away from zero (see Section 2.8 on channel volume). This is 
the case for the dual-polarized hybrid scheme analysed here, which has a normalised channel 
volume dominated by the LOS channel volume 

Hos = (l-7/)2/(l+7/)2- (5.38) 
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Figure 5.7: Distribution of\X\2 for three different transmission schemes over an uncorrelated 
Rayleigh channel 

" 

unt-polarized 

dual-polarized 

dual-polarized hybrid 

10 15 20 
SNR(dB) 

25 30 

Figure 5.8: Performance of three different transmission schemes over an uncorrelated Rayleigh 
channel 

66 



-0.2 0 0.2 0.4 0.6 0.8 1 1.2 

HMI2 

Figure 5.9: Distribution of\X\2for different transmission schemes over an uncorrelated Ricean 
channel 

S 

I 

~"G" 

• 

• 

—6— uni-polarized 
—*-*— dual-polarized 

dual-polanzed hybrid 

10 15 20 25 30 
SNR(dB) 

Figure 5.10: Performance of three different transmission schemes over an uncorrelated Ricean 
channel 
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Figure 5.11: Distribution of\\\2for three different LOSs, 7/ = 0.3 
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5.7 Polarization-Time System: The Golden Code 

In the last section, we investigated the performance of three different transmission schemes 
using Alamouti STBCs across a pair of dual-polarized antennas at the transmitter. The results 
indicate that the performance is dominated by the LOS component and that polarization diver- 
sity along with an appropriate transmission scheme can provide stability of performance across 
changes in environmental conditions. 

Typical of uni-polarized space-time systems, the performance of the Golden Code degrades 
considerably as the LOS component increases due to the loss of diversity. Figure 5.13 shows 
the simulated performance of 4-QAM and 16-QAM modulation in various channel conditions 
(pure scattering K = 0, Ricean K = 10 and pure LOS /\' = oo in uncorrelated channel). 
These simulation results show that the performance degrades as the K- factor increases. In 
this chapter we consider the effect of LOS on the performance of the Golden Code and intro- 
duce a possible remedy with the use of dual-polarized antennas. We analyse the performance 
of the Golden Code in terms of angle between the channels corresponding to the two receivers, 
which allows us to predict the performance without necessarily needing to resort to simula- 
tions. Analysis and simulation results show that with the introduction of polarization diversity 
the performance of the Golden Code can be made consistently good across both rich scattering 
and LOS conditions. 

15 20 
SNR(dB) 

Figure 5.13: Performance of the Golden Code for uncorrelated uni-polarized channels from 
pure scattering to pure LOS 

5.8 The Effect of LOS on the Performance 

Codewords in the Golden Code take the form 

(a 0\  / x\ + X-ZT    x3 + x.iT 

0 a) \i(x3 + nn) xi+X2(i 
(5.39) 
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where a = (1 + ifi)/\/5, a = (1 + ir)/\fh and {x}*= i € C C Z[i] are transmitted sym- 
bols, where C is a signal constellation taken to be 2m — QAM and m bits per symbol. The 
parameters r and /i are the real roots of the polynomial x2 - x - 1, that is. the Golden ratio 
r = (1 + \/5)/2 and its algebraic conjugate // = -1/r = (1 - \/5)/2. The diagonal matrix 
diag(«. o) serves to equalize transmitted signal power across the two transmit antennas. 

Letri = (rn, ri2) and r2 = (r2i,r22) be the two received signal vectors at the first and 
the second receiver and the components are the signals received over two consecutive time 
slots. For convenience, in what follows we will use the rescaled channel gains, h\} = ahij 
and h2] = nh-23 c = (xi, X3) and s = (x2,x.i), so the received signals can be written as 

ri=c/, + s/l + ri1 (5.40) 
T2 = eg + sg + TI2 

where 

hu   h-2i\      .     Ih\\r  hi\\k 
h= I ..       .        ,     h = 

i/i2i  hu j ' \ih21H  /'llT 
(5.41) 

hl2    /l22\ ( h\2T    h.22^ 

ih.22   h.12) ' \ih.22H   hyiT 

where h.tJ is the channel gain from transmit antenna ; to the receive antenna j. 
Given that the channel gains are known at the receivers and each symbol is transmitted 

with equal probability, optimal decoding is provided by the maximum a posterior/maximum 
likelihood (MAP/ML) estimate as follows. Let r = (ri.^.W = (h,h)T and G — (g. .9)' 
and rewrite (5.40) as 

r - xA + n, (5.42) 

where A = (W, G) and x — (c, s). The likelihood function of x given the received signal r 
is given by 

p(r\x) QC exp I — —-j(x - x)AA*(x - x)+ I (5.43) 

where 
x = rAt(AAt)"1. (5.44) 

Taking the prior distribution of x to be uniform on the constellation C, we obtain the MAP/ML 
estimate: 

x = argmaxp(r|x). (5.45) 
xec4 

The performance of (5.45) in decoding x is determined by the determinant of AA' or equiva- 
lent^ AfA. Since 

.jKflJla    U'G \ 

&H     \\Gtl2) ^ 

where 

n«ll? - (1 + Olfciil* + (1 + ^llkail9, 
l|e||2T = (l + r2)|/!l2|2 + (l+^)|/l22|

2, 
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we have 

where 

det(AtA) = ||W||4T||e||4T(l-|A|2f 

l|W||TIIS||r' 

(5.48) 

(5.49) 

The parameter A is an inner produel of two unit eyclotomie vectors and it represents the differ- 
ences (angle) between the channel components H and Q. A similar measure to this parameter 
which represents the angle between two Alamouti users was given in Section 2.4. |48] and was 
used to predict the performance of various Alamouti transmission schemes involving dual- 
polarized antennas (see [40] for details). Good performance corresponds to small values of 
|A|2 and vice versa. 

Consider the capacity of the equivalent channel matrix A which is given by |9], 

C(A) = -E 
°B(de,(l4 + 4^AtA)) 

(5.50) 

where /?., is an average transmitted signal power and e, are eigenvalues of Af A with multi- 
plicity 2 and are 

ei.2 
IIWII; IISII; 

i±11 
\\nfT + \\g\\2T

K (5.51) 

This implies that the capacity of the channel depends on the parameter A. If \\\2 = 0 then we 
have 

e, = \\H\M     and    e2 = \\Q\ 

and the corresponding capacity 

C|A|8=0(A) = IE 
10<(1+4^«)(1+4&I^))' 

If \\\2 = 1 then the channel is rank deficient, that is 

ei = ||W||; + ||0||;     and    e2 = 0, 

and the corresponding capacity is 

E 
C|A|2_1(A) = 2E log (i + gr (11*11*+ IISII*))" 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

Consider the case of a pure scattering channel, i.e. K — 0, then the values of |A|2 is uniformly 
distributed between [0, 1] and can be explicitly written as 

i\i2 KMK 
- I|2 II  .||2 

rt   \\y\\ 

(5.56) 
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Figure 5.14: Distribution of | A \2 for uncorrelated uni-polarized channels 

(h,g)T = (1 + r2)h*uh12 + (1 + »?)h^h22, 
|2 \n\ [l + r2)|An|2 + (l+A«2)|ft2i|2, (5.57) 

\g\\   = (1 + T2)\hv2\2 + (1 + fi2)\h22\ 

It is also clear from (5.56) that in the pure scattering environment, the channel becomes rank 
deficient, i.e. |A|^-_0 = 1, only if fenfeaa = ^21^12 or equivalently det(H) = 0. As A' 
increases H dominates the behaviour of the system and when K = 00, which corresponds to 
pure LOS channels, wc have 

1 
^gijrcosSr 

n - 
/<<•' 

tfie 

\ 

I 

( 

Q = 

i7r(cos $•}• —cos 911) 

Oiir{cos9'•/• -cos 9j-i) — ITT COS 9 H 

i/xe 

re      —-*« pe 
ITT {COS 9f -COS 0/y ) 

i7r(cos 9~J- - COS #/^ ) 

Te-i,rcosflH 

Substituting these values into (2.33). we obtain 

lAl: = 1. (5.58) 

i.e. the channel is rank-deficient hence resulting in the performance degradation. 
Figure 5.13 shows the results of simulated performance of the Golden Code with 4-QAM 

and 16-QAM modulation in various channel conditions (pure scattering (A* = 0), Ricean 
(A' = 10) and pure LOS (K = oo) in uncorrelated channels). Figure 5.14 shows the empirical 
distribution of |A|2 for K = 0, 10 and 100. Clearly, as the A'-factor increases the mean of 
the distribution of |A|2 shifts toward |A|2  =  1.  Thus, as expected, the distribution of |A|2 
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indicates lhat the performance degrades as A increases. The distribution of |A|2 agrees with 
the simulation results. 

5.9 Golden Code and Polarization Diversity 

Consider Golden Code signaling using one dual-polarized transmit and one dual-polarized 
receive antenna. Based on the channel model given by Nabar et al.[58] as described in Sec- 
tion 5.5, the LOS component can be explicitly written as 

H = 

Substituting this into (5.34), we rind 

(   l     Vv) (sTu     i   \ 
iy/Tf         i 

,   G = 
«        y/ll 

T         x/7/M y/lfT        M 

[i^/ijn    T  j ^  iH    ^/IJTJ 

(5.59) 

Ml 
(2 + r2

+/x2)2
7/ 

[(1 + T^) + (1 + M2b/][(1 + r2)7/ + (1 + „*)]' 
(5.60) 

If 7/ < 1, then |A|iys < 1- As (5.60) shows, the antenna's cross-polarization discrim- 
ination (7/) will determine the mean performance of the system. For a pure LOS condition, 
the performance depends solely on the antenna's ability to separate the orthogonal polariza- 
tion. Therefore as the K— factor increases the effect of polarization diversity is to reduce the 
probability that the channel will be rank-deficient, thus resulting in a diversity gain. 

We can predict the performance of the Golden Code in the presence of polarization diversity 
based on the distribution of the parameter |A|2. Figure 5.15 shows the distribution of |A|2 for 
K = 0. 10. 100 when dual-polarized antennas are used. Compared to the case of uni-polarized 
antennas in Figure 5.14, the mean of the |A|2 for A > 0 is now shifted away from the value 1. 
The simulation results in Figure 5.16 demonstrate the benefit of dual-polarized antennas in the 
high A' environments as predicted in Figure 5.15, Note that for pure LOS conditions (A' = oo) 
the channel is fixed, therefore the probability of error decays exponentially with SNR and so 
no diversity order can be defined. 

Figure 5.17 shows the distribution of |A|2 in a correlated environment, with t = 0.5, r = 
0.3. We can see from the distribution lhat for a pure Rayleigh channel (A' = 0), A|2 is no 
longer uniformly distributed but biased toward 1. Hence the performance will degrade com- 
pared to an un-correlated environment. Figure 5.18 demonstrates that, for A' > 0, the better the 
separation of orthogonal polarization (smaller 7/), the better the improvement in performance. 

5.10 Summary 

We investigated the performance of three different transmission schemes for using Alamouti 
STBCs across a pair of spatially separated dual-polarized transmit antennas. The results indi- 
cate that the performance is dominated by the LOS component and that polarization diversity 
along with an appropriate transmission scheme can provide stability of performance across 
changes in environmental conditions. We went on to investigate the performance of the Golden 
Code using polarization in various environmental conditions from rich scattering to pure line 
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of sight. Our analysis leads to a performance parameter which represents the angle between the 
channels to the two receivers and can be used to predict performance. We have analysed how 
the performance of the Golden Code degrades as the environmental A-factor increases. When 
the Golden Code is used to code across orthogonal polarizations of a dual-polarized transmit 
antenna, rather than across spatially separated antennas, we have shown that polarization di- 
versity can lead to consistently good performance across environmental conditions from rich 
scattering to pure line of sight. The simulation results agree with our analysis. We note that 
the approach is not restricted to the Golden Code but can be applied to most STBCs. 
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Chapter 6: Fully Polarimetric MIMO 

In the previous chapter we investigated the performance of a MIMO system using the Golden 
Code with a dual-polarized antenna system and found that the performance can be made con- 
sistently good across environmental conditions from rich scattering to pure LOS. However, we 
assumed that the planes of the dual polarized transmit and receive antennas remained aligned. 
The simulation results for dual-polarized systems show that the performance degrades consid- 
erably if we allowed three dimensional (3-D) rotation of the transmit and/or receive antennas. 

If we are to profitably use the performance stability introduced by polarimetric antennas for 
mobile terminals then we need to address the stability in transmission and/or reception under 
the 3-D rotation of the antennas in the MIMO system. To this end we investigate the use of 
triad antenna at the transmitter and receiver. A triad is composed of three orthogonal dipoles 
oriented along orthogonal directions as described in Section 5.2. We derive the channel model 
and show that the capacity is invariant under arbitrary rotation of the transmitter and/or receiver, 
since the channel matrix is always a 3 x 3 matrix of rank 2. We propose a 3 x 3 STBC suitable 
for this system which achieves full-rate and furthermore has a fast decoding algorithm. We 
give the simulation results for the performance of the triad system using the proposed 3x3 
STBC with and without antenna rotation. We then compare the results with a dual-polarized 
system transmitting Golden Code codewords. 

6.1 System Channel Models 

Consider a MIMO wireless communication system with three transmit and three receive an- 
tennas. We assume a quasi-static fading channel, represented by a 3 x 3 matrix H with entries 
which are complex Gaussian random variables. For each symbol interval, p = (pi,p2,p3)' 
denotes a vector of transmitted complex symbols. The received signal vector y = (j/i.j/a, j/3)1 

can be expressed as 

y = Hp + w, (6.1) 

where w denotes complex Gaussian noise with covariance E{ww } — a I3. 
The channel matrix H can be written as the sum of an average (LOS) component H and a 

variable Rayleigh fading component H, 

K   «      /    1     .,1/25,01/2 
+ \lrn<R' HR' ' (62) 

where £{H} = ^JK/(\ + K) H is the channel mean. H is a complex Gaussian random 
matrix with independent zero-mean and unit variance entries, i.e. hx] € CAf(0, 1). H and 
H are weighted by the Ricean A'-factor. Note that A' = 0 corresponds to the case of pure 
Rayleigh channel. As A' increases, H dominates the behavior of the system and A' = 00 
corresponds to a pure LOS channel. R, = fl'/2/?,1/2t and R, = #,1/2ft,1/2t are the transmit 
and receive correlation matrices respectively. 

Consider a system with a triad antenna at both the transmitter and receiver. A triad is com- 
posed of three orthogonal dipoles oriented along Kuclidean directions e\, e-z. and e.i as shown 
in Figure 5.1. At the transmitter a triad antenna can generate an arbitrary dipole moment p. 
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As shown in Section 5.2 the Car field electric field generated by the triad is 

E = fc--(/3 -nn})p. (6.3) 

The term /.) - nn^ is a 3 x 3 projection matrix with rank 2 and it constrains the oscilla- 
tion direction of the electric field to be perpendicular to its propagation direction as shown in 
Figure 5.2. In spherical coordinates, the propagation direction can be represented as 

/sin 6 cos <A 

V 

sin 6sin 0 

COS0 

(6.4) 

where 0 < 0 < 7r, 0 < <J!> < 2ir. The use of triad antennas allows us to think of this MIMO 
system in an unusual way. Instead of thinking of the individual component antennas and the 
symbols coded onto them at the transmitter and read off at the receiver, we can think directly 
of coding onto a physical dipole moment vector at the transmitter and measuring the resulting 
electric field at the receiver with the LOS channel given by the matrix 

H = Jt2l-(/3-nnt). (6.5) 

It is difficult to build co-located antennas without having some form of mutual coupling. To 
model this coupling between the three components of the triad antenna we introduce mixing 
operators Mt for the transmitter and M, for the receiver so that the LOS channel becomes 
MlHMi- The mixing operators Mt and M, are defined as 

Mt   = Mr   = 
1 

/    1       Pl2    Pl3^ 

%/Jv 
(6.6) P\ 2       1       P-23 

\pl3    023       1    J 

where 0 < pi} < 1 is a coupling between components i and j and is directly related to the 
cross coupling between the antenna elements comprising the triad, and /V is a normalisation 
term given by 

N = ma,x( I + pf2 + Pl.t- 1 + P12 + P23, 1 + Pi3 + pis)- (6.7) 

Assuming that the receiver is at position rn relative to the transmitter and denoting the three 
orthogonal axes of the triad transmitter and receiver (initially assumed to be aligned) by ei, 
e2, e3, the LOS component H then consists of elements given by 

(H)tJ=e]Hej.    i,j = 1,2,3. (6.8) 

The elements of H depend on the propagation conditions and the antenna characteristics and 
satisfy [58], 

E{|/)„|2} = 1,     and 

E{\h,3\
2}= RUh^2} = 7,    i,j= 1,2,3, 

(6.9) 
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where 0 < 7 < 1 describes attenuated cross coupling for polarization multiplexing. In a rich 
scattering environment 7 tends to he close to 1 (for ranges beyond 1.6 km, 7 is always close 
to 1) [58]. Here we assume that 7 - 1. i.e. the scattering changes the polarization states 
randomly, hence in a pure scattering environment, a polarimetric antenna system is equivalent 
to a uni-polarized antenna system. The correlation matrices Rt and R, are modelled as 

R, (6.10) 

where f and r are transmit and receive correlation coefficients respectively. 
For a dual-polarized antenna consisting of co-located vertically and horizontally polarized 

antennas, consider a system with one dual-polarized transmit and one dual-polarized receive 
antenna. The LOS channel matrix Hj is given by 

Hd = P'HP, (6.11) 

(10°\        - where P -    °  '  °    and H is as defined in (6.5). Similarly, H<j is modelled as described tor 
I 0 0 0 / 

triad antennas and the correlation matrices are defined as 

R, 

6.2 The Effect of Antenna Rotation 

Consider the case of pure LOS (K — oc). If the channel is known at the receiver, then the 
capacity is given by [2] 

C(H) = £H   log.det^ + ^HH*)   . (6.12) 

where E, is the average transmitted signal power. From (6.5) and (6.8) it follows that H H   is 
a 3 x 3 rank 2 matrix with equal eigenvalues, and so the capacity (6.12) can be written as 

C(H) = EH 21og2(l + ^A) (6.13) 

where A is the eigenvalue of H H . 
Assume that the transmit and receive triad antennas have been rotated or equivalently. the 

transmitted and receive signals have been rotated. The rotated signal can be represented as 

p  = Rp = p, Ra + p2Re2 + P3Re3. 

V  = Sy = yiSei + y2Se2 + y^Se^. 
(6.14) 

where S and R are 3 x 3 real orthogonal rotation matrices. The elements of the corresponding 
channel matrix H become 

(H )„ = elS'HRej,    i,j = 1,2,3. (6.15) 
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Since S and R are orthogonal, S'TiR has the same singular values as H, i.e. H is still a 3 x 3 
rank 2 matrix, therefore the capacity is invariant under the rotation of the transmit and receive 
antennas, 

C(H') = C(H). (6.16) 

This is not the case when dual-polarized antennas are employed at the transmitter and re- 
ceiver. In that case the change in orientation (3-D rotation) of the dual-polarizxd transmit and 
receive antennas will not preserve the capacity of the rotated channels. Moreover, a transmitter 
or receiver can be rotated such that the channel matrix becomes rank deficient (in fact, rank 1). 
For example, consider a rotated channel matrix, 

(e\S^HRei  e\S^HRe-2\ 
Hd= UstWfle, elS*HRe2) ' (6I7) 

If a dual-polarized receive antenna is rotated such that one of the branches is parallel to the 
direction of propagation n, i.e. 

Se\ = n,    and    Se2 = e2, (6.18) 

then (6.17) becomes 

n*Hei n]He2 

etHe\   e\'He2 

H«=Lt,v„. -t«._ • <6-19) 

Substituting (6.18) into (6.8), we obtain •n'^'H = 0, and we have a rank 1 channel matrix Hd. 
However, if the dual-polarized receive antenna is rotated in a plane, then the capacity is 

invariant under rotation [63]. That is, under a rotation of the receive antenna, (6.11) becomes 

Hd = P^S^HP. (6.20) 

If PS = SP (i.e. P and S commute), then the capacity is invariant under the rotations, and 
we obtain, 

Hrf = SfHd. (6.21) 

Note that P and S commute if and only if S fixes the plane defined by P. i.e. if 5 is a rotation 
around the normal to the plane defined by P. 

The above analysis shows that in a LOS environment, a system with a triad antenna at both 
ends of the link can provide robustness (preserve capacity) to any orientation of the transmit 
and/or receive antennas, which is not the case for dual-polarized antennas. We will see that 
this robustness extends to the hybrid LOS and rich scattering environments described by (6.2). 

6.3 The Full Rate STBC for a Triad Antenna 

In this section we introduce a STBC which, in LOS environments, provides full-rate for the 
triad antenna system discussed above. We emphasize that, although our system consists of one 
physical transmit and one physical receive antenna, the underlying channel has three-inputs and 
three-outputs. The proposed code is a 3 x 3 STBC which transmits six complex information 
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symbols {xt}1=i,Xi € Z[i\ over three time slots from three effective transmit antennas. The 
codewords can be expressed as 

/ X\    X2 X^\ 

X=Bi   jx3 xi x2 

,jx2jx3xij 

where the diagonal matrices B, are 

+ B2 

( Xi   Xh x6\ 

jx6 X.l ,T5 

\jx5jx6x4J 
(6.22) 

fit = (i + j)/3 + e, 

B2 =(-l-2j)h+je2, 

with 0 = diag(0i,02,0.-O-tf» = 2cos(2'7r/7), j = e2nt/3. This is a sub-code of the 3x3 
perfect STBC introduced by Oggier et al. [7] which transmits nine complex information sym- 
bols over three time slots from three transmit antennas. However, this sub-code still provides 
rate 2 and can be decoded with essentially maximum likelihood performance using an algo- 
rithm introduced in [47] with complexity 0(N3), where TV is the size of the underlying signal 
constellation. 

6.4 Simulation Results 

We simulated the performance of the triad and dual-polarized antenna systems allowing re- 
ceiver rotation. The simulation included pure LOS (K = oc), Ricean (A' = 10) and Rayleigh 
(K = 0) channels. The system was initialized so that the polarization of the receiver and the 
transmitter were aligned, i.e. we set n = e3. The receiver was then subject to a random ro- 
tation drawn from the uniform distribution. The counterclockwise rotation about an arbitrary 
unit vector (r>i, v2, v3), by an arbitrary angle a, is given by 

(v\ + (1 - v\)c   V\V2{\ - C) - V\S   t'H'3(l  - C) + \<2S^ 

fit;2(l - c) + V38        v\ + (1 - v\)c i>2i>3(l — c) - i'is    ) 

l'll'.s(l —C) - l»2S   M(l — C) + V\S v\ + (1 - v\)c 

where c = cos a and s = sin a. We assume the mutual coupling between the three elements 
is the same both at the transmitter and the receiver. That is the mixing operators are chosen as 
follows: 

M,   = Mr  = v/TTv 
V " 7 

p 

1 

For a triad antenna system, the transmit codewords are the 3x3 STBC given in (6.22) and 
the information symbols are taken from a 16-QAM constellation. As shown in Figure 6.1, the 
performance of the system is stable under the rotation of the receiver across LOS, Ricean and 
pure scattering conditions. The Golden Code [22] with information symbols taken from the 
16-QAM constellation provides a baseline for evaluating coded dual-polarized system perfor- 
mance. The performance degradation under 3-D rotation shown in Figure 6.2 is consistent with 
the analysis given in Section 6.2. 
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Figure 6.3: Performance of the triad system with and without receiver rotation for correlated 
channels, t=r = 0.5 and p = 0.3 
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Figure 6.4: Performance of the dual-polarized system with and without receiver rotation for 
correlated channels, t = r = 0.5 and p = 0.3 

Figures 6.3 and 6.4 show the performance of triad and dual-polarized systems respectively, 
in a correlated environment, with r = r - 0.5 and p = 0.3. In this case, the performance of 
the triad system is not only robust to the rotation of the antenna but is also robust to the prop- 
agation environment. In comparison, the dual-polarized system loses robustness to changing 
propagation environments. 
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Figure 6.5: Performance of the triad system with and without receiver rotation in correlated 
channels, t = r = 0.6 and p = 0.1 
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Figure 6.6: Performance of the dual-polarized system with and without receiver rotation in 
correlated channels, t — r = 0.6 and p = 0.1 

[f the polarimetric antennas have good cross polarization discrimination (XPD) (small value 
of p), even in highly correlated channels as shown in Figure 6.5 and Figure 6.6. where t — r = 
0.6 and p = 0.1, the triad system is still robust across all conditions, while the performance of 
the dual-polarized system degrades severely under rotation of the antenna. 
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As shown in the simulation results, the use of triad antenna at the transmitter and the receiver 
can provide resilience to arbitrary rotations of the transmit and receive antennas as well as 
stability in performance across propagation conditions. In the next section we consider the 
multi-user downlink where both the base station and each user is equipped with a triad antenna. 

6.5 Fully Polarimetric Multi-user Downlink 

In this section we investigate multi-user detection on a fully polarimetric downlink. In particu- 
lar, we investigate a system which uses a Code Division Multiple Access (CDMA) transmitting 
scheme in which each user is assigned a two dimensional subspace and the transmitted infor- 
mation symbol for each user is coded across this subspace. The received signal for each user 
after despreading is equivalent to the decoding problem of a single user with a space-time block 
code system. We demonstrate that the transmitted information symbols can be chosen to have 
the structure of a STBC with full rate, full diversity and low complexity decoding. 

6.5.1 Multi-user Downlink Model 

Consider the downlink of an A/ user MIMO multi-user system where the base station is 
equipped with a triad transmit antenna and each user has a triad receive antenna. We consider 
CDMA as the multiplexing scheme, i.e. each user is assigned a three dimensional subspace of 
Cr, that is, a matrix Arn € C3xT, such that 

AmA\ = 8mtIa,    e=l,...,M. (6.23) 

In order to make this work for A/ users we must have T > 3A/. 
Let .S'„, be an information symbol matrix for user m with elements being st,i = 1 ..., 9. 

where s, 6 C, 

«4  85 Sfi | . (6.24) 

\s7  ss  s9 

In a pure scattering environment, in the case that H = H is a full rank channel matrix, 
this provides 3 times the rate that could be achieved using single-transmit and single receive 
antennas [64, 65]. However in a LOS environment. H = H as described in (6.5) for a fully 
polarimetric antenna systems, is a rank 2 channel matrix, and the rate is only twice that of a 
single antenna system. 

The signal transmitted from the triad at the base station is 

M 

X = J2 SmAm 6 C3xT. (6.25) 
m= i 

We can write the spreading matrix of the (,h user At as (a\ . a2 ,ae
3 )' where a sequence 

af £ C1 x' and a\a'} = 8ij, then the transmitted signal (6.25) can be rewritten as 

E 
/nm „m   .    „m „m .    -m „m\ 

-mm   ,    „m    m ,    -mm .s., a i   + SQ O2 + s6 a3 

1*7 "i   + sg a,2 + .Si) a-;  , 

(6.26) 
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Ai each transmitter element, the transmitted signal is an element of the subspace of C3 

assigned to the 7;i'h user. Therefore, the transmitted signal for the scheme is equivalent to that 
of spatial multiplexing over three time slots, that is. the number of time slots corresponds to 
the dimension of the subspace allocated to the user. 

We note that Doostnejad et al., [661 study a space-time multiplexing structure for MIMO 
downlink channels in which they modulated the information symbols by a two dimensional 
spreading matrix which is reminiscent of the class of linear dispersion codes discussed in [ 18]. 

Assuming that perfect CSI is known at the receiver of each user, the received signal of the 
Clh user is 

Y, = UeX + W, 

^ (6.27) 
=     J2     HiSm^m + W. 

where W is the complex Gaussian noise matrix with entries. WtJ 6 CjV(0, a2) and Hf 6 
C3x3 is the channel matrix of the ^,h user. 

Multiplying (6.27) by A*, the ith received signal is despread, 

ye=YeAl = HeSe + Tie, (6.28) 

where the noise n/ = WA\ is the projection of the noise onto the user's subspace and is still 
white. Equation (6.28) shows that, after despreading, the decoding problem of each user is 
equivalent to that of a single user with STBC even though the two dimensions are polarization 
and the spreading subspace components, rather than space and time. This suggests that choos- 
ing the structure of the information symbol matrix S is equivalent to choosing an STBC. In the 
following sections, we consider a suitable choice for both the spreading matrix and the symbol 
matrices which are compatible with the triad structure and admit a fast decoding algorithm. 

6.5.2 Symbols Matrix for Multi-user with Triad System 

As shown in Section 6.5.1. the decoding problem at the receiver for each user after despreading 
is equivalent to that of decoding for a single user who is using an STBC. For the case of a single 
user system with triad transmit and receive antennas we have previously proposed the use of 
a polarization-time code [67]. This code has full rate (under LOS conditions), full diversity 
and is fast decodable. It is a sub-code of the 3 x 3 perfect STBC introduced by Oggier et al. 
[7]. The proposed code transmits six complex information symbols {.x,}f, i (usually Ar-HEX 
constellation) where xt is an Eiscnstein integer, xt £ {a + u;6|a,6 € Z,u> = e2rri'3} over 
three time slots from three effective transmit antennas. The symbols matrix for this code has 
the following structure 

(6.29) 
1 

'   S3i+l        S3i + 2     S3i + 3' 

S = ]TB,+1 W«3t + 3     S3J + I      S3i + 2 

\u>S3t(2   W.S3i+3   S3.+ I, 

where the diagonal matrices B, are 

Bi = (l+w)/3 +e, 

B2 = (- -1 - 2u)h +UJ&
2
, 

86 



withe = diag(0i, 02, 0:0,0. = 2cos(2!7r/7).^ = e2w'/3. 
For each user, ihe despread procedure reduces the problem to an equivalent decoding prob- 

lem of a single user with STBC. As shown in [67] this code (6.29) provides rate 2 across 
environmental conditions ranging from pure scattering to pure LOS environment, as well as 
resilience to arbitrary rotations of the transmit and receive antennas. The code can be decoded 
with essentially maximum likelihood performance using an algorithm introduced in [47] with 
complexity 0(N3). 

6.5.3 Decoding 

As we have seen the signal received by the (,h user after despreading has the form 

y = H.S + n. (6.30) 

which can be rewritten as 

V = (l/i,1/2,1/3) = (si,S2,s3)H^ + (s4.S5.sb)7i2 + n. (6.31) 

where y, = (ylU y.2, to) and 

Mi = (Wi,0i,&),    «2 = (M2,G2,C2), (6.32) 

where 
/ bnhu     6,2/121    fc,3^3i\ 

Hi (6.33) 106*3/131    6,1/m    6,2/121 

\u'6,2/i2i   wb,:ih3\  biihwj 

and similarly for Q, and d for the second and third receive antenna respectively.  Let c = 
(si,«2, S3) and d = («4, S5, sB). We can write (6.31) as 

y = CHi + dfHi + n. (6.34) 

The likelihood function associated with (6.34) is 

p(y\c,d) rx exp f-^j lly - cHi - dH3fj • (6.35) 

Based on the conditional optimization described in [46], the decoding algorithm can be sum- 
marized as follows: 

[fdet(«2?ij) >det(«i«l) 

II - II2 

c = argmin   y - cTii - d(c)7t2     , 
c      11 11 

d = Q(d(c)), 

otherwise. 

d = argmin ||y-c(d)-Hi - dn2\\   . (6.36) 
d 

c = Q(c(d)), 
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where 

d(c) = (y-cHl)Hl(H-2Hl) 

c(d) = (»-dWa)Wi(WiWJ) t\-i 

(6.37) 

(6.38) 

HereQ(c) = (Q(ci),-•• , Q(cs)), where Q is the quantizer for the HEX constellation. 

6.5.4 Spreading Matrix of Length :Y" 

Finally, we need appropriate spreading sequences for this triad based multi-user scheme. As 
such we would like to have spreading sequences with a length which is a power of three, 
rather than the usual power of two. Fortunately, spreading sequences of length 3m, which are 
analogous to the Walsh-Hadamard sequences, can be constructed as follows (See, for example 
[68]). 

Begin with the Z"' consisting of m-tuples of elements from Z3, i.e. the integers modulo 3. 
For each 6 e Z•, we construct a function on ZJ1 with value at a 6 Z• given by 

fh(a) = ui (6.39) 

for all a 6 Z3', where u> = exp(27ri/3) is a cube root of unity and • denotes the usual dot 
product on Zp". The functions /b take values in the set {\,UJ,U;

2
}. This set of functions is 

orthogonal, i.e. 

{fb,M=   £ Ma)fb>(a) 

E(b-b') a 
U 

oez;;1 

= 3"'<5(,.b'. 

(6.40) 

Choosing an ordering for the elements of ZJ," we can write these functions as sequences and 
stack them in a matrix. For example for m = 2, we obtain a 9 x 0 orthogonal matrix as follows 

H2 = 

I 1 

.2 

1 
U,3 

1 
1 
1 

1 
ui 

I 
2 

UI 

1 
1 
1 

1 

^2 

1 1 UI Ui •jj J1 
ui2 

Ui a ui u,2 1 u/3 1 
2 2 1 UI k*/ ui 

2 
I 
,2 

ui 
2 

w ui 
1 i ui ui ui u> 

2 ,2 2 \ -f' ui U? 1 u> ui Ui 

LA 

iJ 

(6.41) 

In general H,„ is unitary, i.e. 

//„,//„,   ~   H,nHm   — 3     /3" (6.42) 

The spreading matrices Ak for our scheme, for a maximum of 3m users, consist of sets of 
mutually exclusive rows from the matrix Hm 11. 
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6.5.5 Inhomogeneous Multi-user Downlink MIMO 

The MIMO CDMA scheme described in the previous section can be generalized to the inho- 
mogeneous MIMO downlink where the base station is equipped with nt transmit antennas but 
each user can be equipped with a different number of receive antennas. Note that the base 
station is equipped with a fixed number of transmit antennas no matter how many users there 
are. Hong et al [69] proposed a scheme which allows different number of receive antennas, 
however, the base station requires the number of transmit antennas to be the sum of all users' 
receive antennas in order to support such a capability. 

We give an example of two transmit antennas, uni-polarized (vertically or horizontally po- 
larized), spatially separated at the base station and each user can be equipped with either one or 
two receive antennas. The code structure for the user is chosen to be the structure of Alamouti 
signaling |14] or the 2 x 2 full rate, full diversity algebraic STBC such as the Golden Code 
[22], Silver code [27] etc. or even just spatial multiplexing. Let us use the Golden Code for the 
dual antenna users. 

The user with a single receive antenna, Alamouti scheme is chosen. 

1 -s <;' 

For the users with two receive antennas, the Golden Code structure is chosen, 

(a(si + TS2)   a(s3 + TSi)\ 
... ,     . J. (6.44) 
ia(s3 + HS4) a(s\ + Lis-2)J 

where Q = (1 + i/j)/\/5,a = (1 + ir)/\/5,r = (1 + \/5)/2and/i = (1 - \/5)/2. 
For M users, the spreading matrix for each user is a two dimensional subspace matrix, i.e. 

Am € C2*T where 7' = 2A/ is the length of the sequence. The transmitted signal at the base 
station is given by 

,„   , \s3 0.1  + «4a2 J 

If the £    user has a single antenna then their received signal is given by 

/   sjai + s2a2\ " 
V=(hu,h2i)\ +(/(n,/i2i)     >       SmAm + n, (6.46) 

\ / m-l.jn/f 

where y is the 1 x T received signal vector. After despreading, this becomes 

sj    s2\ 
V  = (fcu.fai) +n , (6.47) 

s2   .S'l 

where y' = y(a\, a2)
1 and n' = n(ai,a2y. Equation (6.47) is the well known Alamouti 

decoding problem. 
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Similarly, if the f'h user is equipped with 2 receive antennas, after despreading the decoding 
problem becomes 

y  = y{a1,a2)
1 

/in  fcaA  /a(si +rs2)   a(s3 + TS4)\        ( (6.48) 

h\2  h22J \ia{s;i + ^s4)  a(si + ^is2)J 

where y is the 2 x 7' received vector. This is the decoding problem of the Golden Code for a 
single user which can be decoded with an essentially ML decoder with quadratic complexity 
given in [46]. 

6.6 Summary 

We have quantified the performance gains that result from the introduction of a triad antenna 
at both the transmitter and receiver in a MIMO communication system. We have shown that, 
in a LOS environment, the capacity of the channel is invariant to the rotation of the transmitter 
and/or receiver. Simulation results show that system performance is stable across a full range 
of propagation environments from LOS to pure Rayleigh scattering. An advantage of the triad 
system over the baseline provided by dual-polarization was shown to be a resilience to arbitrary 
rotations of the transmit and receive antennas. The practicality of coded transmission for the 
triad system was shown through design of a full rate 3x3 STBC that provides full rate in LOS 
conditions and admits low-complexity decoding. 

We have extended the triad system to a multi-user scenario in which we considered a CDMA 
transmitting scheme for the multiuser downlink in a system where both the base station and 
each user is equipped with a triad antenna. The information symbols for each user are spread 
over their assigned spreading matrix of orthogonal sequences. The received signal for each 
user after despreading is equivalent to the decoding problem of a single user using a 3 x 3 
STBC. This allows the information symbols for each user to be coded on an STBC which 
achieves full-rate, full-diversity and has a last decoding algorithm. 
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